See More

In the yeast genome, there are five genes known to encode aldehyde dehydrogenases, as well as an additional gene with sequence similarity. Ald2p and Ald3p are cytosolic enzymes which use only NAD+ as cofactor. Both genes are induced in response to ethanol or stress and repressed by glucose. Ald4p and Ald5p are mitochondrial, use NAD and NADP as cofactors, and are K+ dependent. Ald4p, the major isoform, is glucose repressed and ald4 mutants do not grow on ethanol, while Ald5p, the minor isoform, is constitutively expressed (10, 11). ALD6 encodes the Mg2+ activated cytosolic enzyme, which uses NADP+ as cofactor and is constitutively expressed. HFD1 has been predicted to encode a fatty aldehyde dehydrogenase (3, 12, 9, 13).Null mutations in ALD6 confer a reduced growth rate in glucose relative to wild type cells, and growth is severely impaired in ethanol (1). During nitrogen starvation, however, an ald6 null mutation enhances viability. Apparently Ald6p activity is detrimental for survival under this condition, as Ald6p is degraded via the autophagy pathway in nitrogen starved cells (7). Aldehyde dehydrogenases are conserved across many species and are key enzymes in metabolic pathways, some of which function to detoxify harmful chemical intermediates. In humans, mutations in aldehyde dehydrogenase genes (ALDH1, ALDH2, ALDH4 and ALDH10) are associated with alcoholism and carcinogenesis. In plants, these enzymes play important roles in fertility and in fruit ripening (3 and references therein).", "date_edited": "2009-08-26"}, "literature_overview": {"primary_count": 69, "additional_count": 176, "review_count": 66, "go_count": 10, "phenotype_count": 11, "disease_count": 0, "interaction_count": 84, "regulation_count": 12, "ptm_count": 18, "funComplement_count": 0, "htp_count": 37, "total_count": 434}, "disease_overview": {"manual_disease_terms": [], "htp_disease_terms": [], "computational_annotation_count": 0, "date_last_reviewed": null}, "ecnumbers": [{"display_name": "1.2.1.4", "link": "/ecnumber/EC:1.2.1.4"}], "URS_ID": null, "main_strain": "S288C", "regulation_overview": {"regulator_count": 33, "target_count": 0, "paragraph": {"text": "ALD6/YPL061W promoter is bound by 9 different transcription factors in response to heat; ALD6 transcription is regulated by Yap1p in response to hydrogen peroxide and by Ino2p in response to glucose starvation; ALD6/YPL061W transcription is upregulated by Stb5p in response to glucose starvation and by Gcn4p in response to boron; Ald6 protein activity is regulated by Atg1p and Cdc5p", "date_edited": "2025-03-24", "references": [{"id": 1990960, "display_name": "Bergenholm D, et al. (2018)", "citation": "Bergenholm D, et al. (2018) Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion. mSystems 3(4)", "pubmed_id": 30073202, "link": "/reference/S000218435", "year": 2018, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1128/mSystems.00215-17"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068829/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/30073202"}]}, {"id": 2380747, "display_name": "Dokl\u00e1dal L, et al. (2021)", "citation": "Dokl\u00e1dal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149", "pubmed_id": 34965436, "link": "/reference/S000312707", "year": 2021, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1016/j.celrep.2021.110149"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/34965436"}]}, {"id": 2488500, "display_name": "King GA, et al. (2023)", "citation": "King GA, et al. (2023) Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J Cell Biol 222(2)", "pubmed_id": 36515990, "link": "/reference/S000341354", "year": 2023, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1083/jcb.202204039"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754704/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/36515990"}]}, {"id": 402334, "display_name": "Uluisik I, et al. (2011)", "citation": "Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772", "pubmed_id": 22114689, "link": "/reference/S000149426", "year": 2011, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1371/journal.pone.0027772"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219688/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/22114689"}]}, {"id": 1991725, "display_name": "Ouyang L, et al. (2018)", "citation": "Ouyang L, et al. (2018) Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Res 18(8)", "pubmed_id": 30107458, "link": "/reference/S000218483", "year": 2018, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1093/femsyr/foy091"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/30107458"}]}, {"id": 414327, "display_name": "Venters BJ, et al. (2011)", "citation": "Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92", "pubmed_id": 21329885, "link": "/reference/S000145602", "year": 2011, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1016/j.molcel.2011.01.015"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057419/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/21329885"}]}, {"id": 561452, "display_name": "Cohen BA, et al. (2002)", "citation": "Cohen BA, et al. (2002) Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol Biol Cell 13(5):1608-14", "pubmed_id": 12006656, "link": "/reference/S000069926", "year": 2002, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1091/mbc.01-10-0472"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC111130/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/12006656"}, {"display_name": "Reference supplement", "link": "http://salt2.med.harvard.edu/cgi-bin/ExpressDByeast/EXDDisplayEDS?EDSNo=36"}]}]}}, "reference_mapping": {"616874": 1, "541540": 2, "649448": 3, "517760": 4, "2530670": 5, "551180": 6, "543992": 7, "633040": 8, "572207": 9, "615437": 10, "610336": 11, "610582": 12, "525306": 13}, "history": [{"category": "Name", "history_type": "LSP", "note": "Name: ALD1", "date_created": "2010-02-16", "references": [{"id": 615437, "display_name": "Wang X, et al. (1998)", "citation": "Wang X, et al. (1998) Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180(4):822-30", "pubmed_id": 9473035, "link": "/reference/S000050673", "year": 1998, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1128/JB.180.4.822-830.1998"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC106960/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/9473035"}]}]}, {"category": "Name", "history_type": "LSP", "note": "Name: ALD6", "date_created": "2000-05-19", "references": [{"id": 616874, "display_name": "Meaden PG, et al. (1997)", "citation": "Meaden PG, et al. (1997) The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast 13(14):1319-27", "pubmed_id": 9392076, "link": "/reference/S000050185", "year": 1997, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/9392076"}]}]}, {"category": "Nomenclature history", "history_type": "LSP", "note": "Nomenclature history: Nomenclature of the aldehyde dehydrogenase-encoding genes was in flux before 1999, and in several cases the same gene name was assigned to different genes. The confusing issues, and the current nomenclature system, are explained in Navarro-Avino et al., Yeast 15(10A):829-42 (1999). Note that the name ALD1 is not in use as a standard name, since it was initially assigned to a sequence that later proved to be a cloning artifact (GenBank M57887.1).", "date_created": "2007-11-27", "references": []}], "complexes": []}, tabs: {"id": 1283808, "protein_tab": true, "interaction_tab": true, "summary_tab": true, "go_tab": true, "sequence_section": true, "expression_tab": true, "phenotype_tab": true, "literature_tab": true, "wiki_tab": false, "regulation_tab": true, "sequence_tab": true, "history_tab": true, "homology_tab": true, "disease_tab": false} }; ALD6 | SGD

ALD6 / YPL061W Overview


Standard Name
ALD6 1
Systematic Name
YPL061W
SGD ID
SGD:S000005982
Aliases
ALD1 10
Feature Type
ORF , Verified
Description
Cytosolic aldehyde dehydrogenase; activated by Mg2+ and utilizes NADP+ as the preferred coenzyme; required for conversion of acetaldehyde to acetate; constitutively expressed; localizes to the mitochondrial outer surface upon oxidative stress; negative regulator of nonselective autophagy; Stb5p directly regulates the expression of ALD6 mRNA and directly binds to the ALD6 promoter 2 3 4 5
Name Description
ALdehyde Dehydrogenase 1
Comparative Info
Sequence Details

Sequence

The S. cerevisiae Reference Genome sequence is derived from laboratory strain S288C. Download DNA or protein sequence, view genomic context and coordinates. Click "Sequence Details" to view all sequence information for this locus, including that for other strains.


Summary
ALD6/YPL061W is located on the left arm of chromosome XVI between uncharacterized gene YPL062W and MFM1 mitochondrial magnesium transporter; coding sequence is 1503 nucleotides long with 7 synonymous SNPs
Protein Details

Protein

Basic sequence-derived (length, molecular weight, isoelectric point) and experimentally-determined (median abundance, median absolute deviation) protein information. Click "Protein Details" for further information about the protein such as half-life, abundance, domains, domains shared with other proteins, protein sequence retrieval for various strains, physico-chemical properties, protein modification sites, and external identifiers for the protein.


Summary
Ald6p is 500 amino acids long, short-lived, high in abundance; N-glycosylated on N296, acetylated on 9 lysines, succinylated on 5 lysines, ubiquitinylated on 10 lysines, phosphorylated on 18 residues; protein activity regulated by Cdc5p via phosphorylation on S261 and S262, and by Atg1p on S262
Length (a.a.)
500
Mol. Weight (Da)
54405.6
Isoelectric Point
5.08
Median Abundance (molecules/cell)
135000 +/- 101795
Half-life (hr)
4.0

Alleles

Curated mutant alleles for the specified gene, listed alphabetically. Click on the allele name to open the allele page. Click "SGD search" to view all alleles in search results.


View all ALD6 alleles in SGD search

Gene Ontology Details

Gene Ontology

GO Annotations consist of four mandatory components: a gene product, a term from one of the three Gene Ontology (GO) controlled vocabularies (Molecular Function, Biological Process, and Cellular Component), a reference, and an evidence code. SGD has manually curated and high-throughput GO Annotations, both derived from the literature, as well as computational, or predicted, annotations. Click "Gene Ontology Details" to view all GO information and evidence for this locus as well as biological processes it shares with other genes.


Summary
Aldehyde dehydrogenase involved in acetate biosynthesis, NADPH regeneration and response to salt stress; localized to the mitochondrion and cytosol

View computational annotations

Molecular Function

Manually Curated

Biological Process

Manually Curated

Cellular Component

Manually Curated

Pathways


Phenotype Details

Phenotype

Phenotype annotations for a gene are curated single mutant phenotypes that require an observable (e.g., "cell shape"), a qualifier (e.g., "abnormal"), a mutant type (e.g., null), strain background, and a reference. In addition, annotations are classified as classical genetics or high-throughput (e.g., large scale survey, systematic mutation set). Whenever possible, allele information and additional details are provided. Click "Phenotype Details" to view all phenotype annotations and evidence for this locus as well as phenotypes it shares with other genes.


Summary
ALD6/YPL061W is a non-essential gene; null mutant is viable and displays decreased growth rate, decreased competitive fitness, inability to utilize ethanol as a carbon source, defects in acetate formation during anaerobic growth, defects in glycogen accumulation, increased sensitivity to oxidative stress, and increased resistance to methylmercury, hyperosmotic stress, nitrogen starvation and zinc limitation
Interaction Details

Interaction

Interaction annotations are curated by BioGRID and include physical or genetic interactions observed between at least two genes. An interaction annotation is composed of the interaction type, name of the interactor, assay type (e.g., Two-Hybrid), annotation type (e.g., manual or high-throughput), and a reference, as well as other experimental details. Click "Interaction Details" to view all interaction annotations and evidence for this locus, including an interaction visualization.


Summary
Ald6p interacts physically with proteins involved in translation; ALD6 interacts genetically with genes involved in lipid metabolism and transcription

356 total interactions for 308 unique genes

Physical Interactions

  • Affinity Capture-MS: 121
  • Affinity Capture-RNA: 8
  • Co-purification: 3
  • PCA: 1
  • Proximity Label-MS: 3
  • Reconstituted Complex: 2

Genetic Interactions

  • Dosage Growth Defect: 1
  • Dosage Rescue: 2
  • Negative Genetic: 145
  • Phenotypic Enhancement: 11
  • Phenotypic Suppression: 3
  • Positive Genetic: 51
  • Synthetic Growth Defect: 4
  • Synthetic Rescue: 1
Regulation Details

Regulation

The number of putative Regulators (genes that regulate it) and Targets (genes it regulates) for the given locus, based on experimental evidence. This evidence includes data generated through high-throughput techniques. Click "Regulation Details" to view all regulation annotations, shared GO enrichment among regulation Targets, and a regulator/target diagram for the locus.


Summary
ALD6/YPL061W promoter is bound by 9 different transcription factors in response to heat; ALD6 transcription is regulated by Yap1p in response to hydrogen peroxide and by Ino2p in response to glucose starvation; ALD6/YPL061W transcription is upregulated by Stb5p in response to glucose starvation and by Gcn4p in response to boron; Ald6 protein activity is regulated by Atg1p and Cdc5p
Regulators
33
Targets
0
Expression Details

Expression

Expression data are derived from records contained in the Gene Expression Omnibus (GEO), and are first log2 transformed and normalized. Referenced datasets may contain one or more condition(s), and as a result there may be a greater number of conditions than datasets represented in a single clickable histogram bar. The histogram division at 0.0 separates the down-regulated (green) conditions and datasets from those that are up-regulated (red). Click "Expression Details" to view all expression annotations and details for this locus, including a visualization of genes that share a similar expression pattern.


Summary Paragraph

A summary of the locus, written by SGD Biocurators following a thorough review of the literature. Links to gene names and curated GO terms are included within the Summary Paragraphs.


Last Updated: 2009-08-26

Literature Details

Literature

All manually curated literature for the specified gene, organized into topics according to their relevance to the gene (Primary Literature, Additional Literature, or Review). Click "Literature Details" to view all literature information for this locus, including shared literature between genes.


Primary
69
Additional
176
Reviews
66

Resources