Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The van der Waals MoSi2N4 materials family

Abstract

Two-dimensional materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides, are normally limited by the known 3D bulk materials. The design and synthesis of entirely new 2D materials, particularly van der Waals (vdW) layered materials, would significantly expand the properties and functionalities of 2D materials. In 2020, a novel vdW layered material, MoSi2N4, was synthesized by passivating the surface of 2D non-layered molybdenum nitride with the addition of elemental silicon, which has since opened up a new vdW materials family with the general formula MA2Z4. To date, over a hundred MA2Z4 materials and their derivatives have been predicted, in addition to the synthesized MSi2N4 (M = Mo, W), encompassing metals, semiconductors, superconductors, topological insulators, ferroelectrics and ferromagnets, owing to the diversity of elements and structures in MA2Z4. Such materials exhibit a variety of exceptional electronic, optical, thermal, mechanical, ferroelectric and magnetic properties, and they are promising for applications in electronic and optoelectronic devices, electrocatalysis, photocatalysis and batteries. Over the past 4 years, the MoSi2N4 materials family has rapidly emerged as a key research frontier in materials science. In this Review, we summarize recent advances in the investigation of materials in the MoSi2N4 family, covering their crystal structure, synthesis methods, fundamental properties and potential applications, and provide an outlook on future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and crystal structure of MoSi2N4.
Fig. 2: ‘Periodic table’ of the van der Waals MoSi2N4 materials family.
Fig. 3: Crystal structures of MA2Z4 materials and their derivatives.
Fig. 4: Synthesis of MSi2N4 (M = Mo, W) and its derivatives.
Fig. 5: Electronic band structures of MoSi2N4 and other MA2Z4 materials.
Fig. 6: Properties of MoSi2N4 and other MA2Z4 materials.
Fig. 7: Magnetic and spin–valley properties.
Fig. 8: Applications of MA2Z4 materials.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Kaur, H. & Coleman, J. N. Liquid-phase exfoliation of nonlayered non-van-der-Waals crystals into nanoplatelets. Adv. Mater. 34, 2202164 (2022).

    Article  CAS  Google Scholar 

  5. Balan, A. P. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164–200 (2022).

    Article  CAS  Google Scholar 

  6. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).

    Article  CAS  Google Scholar 

  8. Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Novoselov, K. S. Discovery of 2D van der Waals layered MoSi2N4 family. Natl Sci. Rev. 7, 1842–1844 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Latychevskaia, T., Bandurin, D. A. & Novoselov, K. S. A new family of septuple-layer 2D materials of MoSi2N4-like crystals. Nat. Rev. Phys. 6, 426–438 (2024).

    Article  CAS  Google Scholar 

  12. Yin, Y., Gong, Q., Yi, M. & Guo, W. Emerging versatile two-dimensional MoSi2N4 family. Adv. Funct. Mater. 33, 2214050 (2024).

    Article  Google Scholar 

  13. Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399–459 (1984).

    Article  Google Scholar 

  14. Zhou, N., Yang. R. & Zhai. T. Two-dimensional non-layered materials. Mater. Today Nano 8, 100051 (2019).

    Article  Google Scholar 

  15. Hong, Y.-L. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670–674 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Wang, L. et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 12, 2361 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Qiu, X. et al. High hole mobilities in two dimensional monolayer MSi2Z4 (M = Mo/W; Z = P, As, Sb) for solar cells. J. Mater. Chem. C 10, 15483–15490 (2022).

    Article  CAS  Google Scholar 

  18. Mortazavi, B., Shojaei, F., Javvaji, B., Rabczuk, T. & Zhuang, X. Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Mater. Today Energy 22, 100839 (2021).

    Article  CAS  Google Scholar 

  19. Wang, Y. et al. Janus MSiSnN4(M = Mo; W): high efficiently overall water splitting photocatalyst triggered by the intrinsic electric field. Mol. Catal. 557, 113964 (2024).

    CAS  Google Scholar 

  20. Chen, T. et al. Optoelectronic properties, stability, and thermodynamic properties of 2D XSn2N4 (X = Cr, Mo, W) monolayers. Phys. B Condens. Matter 684, 415976 (2024).

    Article  CAS  Google Scholar 

  21. Rahman, A. U., Hussain, G., Khan, I., Samad, A. & Ouyang, Z. Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials. Comput. Mater. Sci. 255, 113899 (2025).

    Article  CAS  Google Scholar 

  22. Verzola, I. M. R. et al. Nontrivial topology in monolayer MA2Z4 (M = Ti, Zr, or Hf; A = Si or Ge; and Z = N, P, As, Sb, or Bi). J. Phys. Chem. C 128, 6829–6835 (2024).

    Article  CAS  Google Scholar 

  23. Jappor, H. R. et al. Prediction of 2D XC2N4 (X= Ti, Mo, and W) monolayers with high mobility as an encouraging candidate for photovoltaic devices. Surf. Interfaces 54, 105261 (2024).

    Article  CAS  Google Scholar 

  24. Zhao, Z., Duan, X., Fang, X., Wang, X. & Mi, W. Prediction of electronic structure and magnetic anisotropy of two-dimensional MSi2N4 (M=3d transition-metal) monolayers. Appl. Surf. Sci. 611, 155693 (2023).

    Article  CAS  Google Scholar 

  25. Ding, Y. & Wang, Y. Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = Y–Cd and Hf–Hg) nanosheets and their versatile electronic and magnetic properties. J. Phys. Chem. C 125, 19580–19591 (2021).

    Article  CAS  Google Scholar 

  26. Varjovi, M. J., Durgun, E., Pacchioni, G. & Tosoni, S. Stable distorted T phase of MSi2N4 (M = Ru and Os) monolayers: first-principles insights into structural, vibrational, mechanical, electronic, and optical properties. Phys. Rev. Mater. 8, 074004 (2024).

    Article  CAS  Google Scholar 

  27. Varjovi, M. J., Kilic, M. E. & Durgun, E. First-principles investigation on the structural, vibrational, mechanical, electronic, and optical properties of MSi2Z4 (M: Pd and Pt, Z: N and P) monolayers. Phys. Rev. Mater. 7, 034002 (2023).

    Article  CAS  Google Scholar 

  28. Ding, Y. et al. Two-dimensional half-metals MSi2N4 (M = Al, Ga, In, Tl) with intrinsic p-type ferromagnetism and ultrawide bandgaps. Phys. Chem. Chem. Phys. 26, 13327–13334 (2024).

    Article  PubMed  CAS  Google Scholar 

  29. Varjovi, M. J., Ershadrad, S., Sanyal, B. & Tosoni, S. Two-dimensional MSi2N4 (M = Ge, Sn, and Pb) monolayers: promising new materials for optoelectronic applications. 2D Mater. 11, 015016 (2023).

    Article  Google Scholar 

  30. Dat, V. D. & Vu, T. V. Layered post-transition-metal dichalcogenide SnGe2N4 as a promising photoelectric material: a DFT study. RSC Adv. 12, 10249–10257 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu, W. et al. Two-dimensional rare-earth-based half-metals with topological bimerons. Nano Lett. 24, 15473–15480 (2024).

    Article  PubMed  CAS  Google Scholar 

  32. Lu, C. et al. Monolayer ThSi2N4: an indirect-gap semiconductor with ultra-high carrier mobility. Phys. Rev. B 108, 205427 (2023).

    Article  CAS  Google Scholar 

  33. Zhang, B. et al. The high electron mobility for spin-down channel of two-dimensional spin-polarized half-metallic ferromagnetic EuSi2N4 monolayer. J. Comput. Chem. 45, 2678–2689 (2024).

    PubMed  CAS  Google Scholar 

  34. Guo, S.-D., Mu, W.-Q., Zhu, Y.-T., Han, R.-Y. & Ren, W.-C. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C 9, 2464–2473 (2021).

    Article  CAS  Google Scholar 

  35. Liu, Z. et al. Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds. Natl Sci. Rev. 10, nwac273 (2023).

    Article  PubMed  CAS  Google Scholar 

  36. Du, Y. et al. Thermal conductivity in MoSi2N4(MoN)n: insights into phonon scattering and transport. Int. Commun. Heat Mass Transf. 159, 108361 (2024).

    Article  CAS  Google Scholar 

  37. Zhu, Y., Li, P.-Y., Yuan, J.-H., Zhang, P. & Wang, J. First-principles prediction of 2D semiconductors MAN3 (M = V, Nb, Ta; A = Si, Ge) from the MA2N4 family: implication for optoelectronics applications. ACS Appl. Nano Mater. 7, 7300–7311 (2024).

    Article  CAS  Google Scholar 

  38. Sibatov, R. T., Meftakhutdinov, R. M. & Kochaev, A. I. Asymmetric XMoSiN2 (X=S, Se, Te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics. Appl. Surf. Sci. 585, 152465 (2022).

    Article  CAS  Google Scholar 

  39. Zhao, J., Qi, Y., Yao, C. & Zeng, H. Tunable valley-spin splitting in a Janus XMSiN2 monolayer (X = S, Se; M = Mo, Cr) and giant valley polarization via vanadium doping. Phys. Rev. B 109, 035408 (2024).

    Article  CAS  Google Scholar 

  40. Yuan, G. et al. First-principles calculations of 2D Janus WSSiN2 monolayer for water splitting. ACS Appl. Nano Mater. 6, 1956–1964 (2023).

    Article  CAS  Google Scholar 

  41. Gao, Z., He, Y. & Xiong, K. Two-dimensional SPdAZ2 (A = Si, Ge; Z = N, P, As) monolayers with an intrinsic electric field for high-performance photocatalysis. Phys. Chem. Chem. Phys. 26, 185–197 (2024).

    Article  CAS  Google Scholar 

  42. Gao, Z., He, X., Li, W., He, Y. & Xiong, K. First principles prediction of two-dimensional Janus STiXY2 (X = Si, Ge; Y = N, P, As) materials. Dalton Trans. 52, 8322–8331 (2023).

    Article  PubMed  CAS  Google Scholar 

  43. Guo, S. et al. Spatially confined microcells: a path toward TMD catalyst design. Chem. Rev. 124, 6952–7006 (2024).

    Article  PubMed  CAS  Google Scholar 

  44. Xue, G. et al. Large-area epitaxial growth of transition metal dichalcogenides. Chem. Rev. 124, 9785–9865 (2024).

    Article  PubMed  CAS  Google Scholar 

  45. Guo, S.-D., Zhu, Y.-T., Mu, W.-Q., Wang, L. & Chen, X.-Q. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M=Mo and W). Comput. Mater. Sci. 188, 110223 (2021).

    Article  CAS  Google Scholar 

  46. Ding, Y. & Wang, Y. Two-dimensional T′-phase MA2N4 (M=Mo/W, A=Si/Ge) nanosheets: first-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction. Appl. Surf. Sci. 627, 157256 (2023).

    Article  CAS  Google Scholar 

  47. Yu, Y., Zhou, J., Guo, Z. & Sun, Z. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces 13, 28090–28097 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Rezavand, A., Ghobadi, N. & Behnamghader, B. Electronic and spintronic properties of Janus MSi2PxAsy (M = Mo, W) monolayers. Phys. Rev. B 106, 035417 (2022).

    Article  CAS  Google Scholar 

  49. Yin, Y., Gong, Q., Yi, M. & Guo, W. Monolayer polar metals with large piezoelectricity derived from MoSi2N4. Mater. Horiz. 10, 5177–5184 (2023).

    Article  PubMed  CAS  Google Scholar 

  50. Ding, Y. & Wang, Y. First-principles investigation of two-dimensional iron molybdenum nitride: a double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties. Front. Phys. 19, 63207 (2024).

    Article  Google Scholar 

  51. Tho, C. C. et al. Ultrathick MA2N4(M’N) intercalated monolayers with sublayer‐protected Fermi surface conduction states: interconnect and metal contact applications. Adv. Phys. Res. 3, 2300156 (2024).

    Article  Google Scholar 

  52. Yan, L. et al. Theoretical prediction of two-dimensional 1T−MSiN3 (M=V,Nb) with direct bandgap and long carrier lifetime. Phys. Rev. B 108, 155309 (2023).

    Article  CAS  Google Scholar 

  53. Wang, X., Liang, L., Wang, X., Wang, H. & Li, X. Carrier-tunable magnetism and valleys in VSiZ3 monolayers. Phys. Rev. Appl. 22, 054029 (2024).

    Article  CAS  Google Scholar 

  54. Cui, Z. et al. Two-dimensional XYN3 (X=V, Nb, Ta; Y=Si, Ge): promising optoelectronic materials in photovoltaic photodetectors. Surf. Interfaces 54, 105160 (2024).

    Article  CAS  Google Scholar 

  55. Nguyen, S.-T., Cuong, P. V., Cuong, N. Q. & Nguyen, C. V. First principles prediction of two-dimensional Janus XMoGeN2 (X = S, Se and Te) materials. Dalton Trans. 51, 14338–14344 (2022).

    Article  PubMed  CAS  Google Scholar 

  56. Rezavand, A. & Ghobadi, N. First-principle study on quintuple-atomic-layer Janus MTeSiX2 (M= Mo, W; X=N, P, As) monolayers with intrinsic Rashba spin-splitting and Mexican hat dispersion. Mater. Sci. Semicond. Process. 152, 107061 (2022).

    Article  CAS  Google Scholar 

  57. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  PubMed  CAS  Google Scholar 

  58. Wang, Z. et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29, 1700364 (2017).

    Article  Google Scholar 

  59. Xu, C. et al. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11, 5906–5914 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Xu, C. et al. Superhigh uniform magnetic Cr substitution in a 2D Mo2C superconductor for a macroscopic-scale Kondo effect. Adv. Mater. 32, 2002825 (2020).

    Article  CAS  Google Scholar 

  61. Huang, D. et al. MoSi2N4: a 2D regime with strong exciton–phonon coupling. Adv. Opt. Mater. 10, 2102612 (2022).

    Article  CAS  Google Scholar 

  62. Huang, D. et al. Exciton self‐trapping effect in MoSi2N4 for modulating nonlinear optical process. Adv. Opt. Mater. 11, 2202622 (2023).

    Article  CAS  Google Scholar 

  63. Mortazavi, B. et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 82, 105716 (2021).

    Article  CAS  Google Scholar 

  64. Priydarshi, A., Chauhan, Y. S., Bhowmick, S. & Agarwal, A. Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P). Nanoscale 14, 11988–11997 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Ren, Y.-T. et al. Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: promising spintronic properties and band alignments. Phys. Rev. Mater. 6, 064006 (2022).

    Article  CAS  Google Scholar 

  66. Qiao, L. et al. Giant carrier mobility in a room-temperature ferromagnetic VSi2N4 monolayer. Nano Lett. 24, 6403–6409 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Yan, L. et al. Surface passivation induced a significant enhancement of superconductivity in layered two-dimensional MSi2N4 (M = Ta and Nb) materials. Nanoscale 13, 18947–18954 (2021).

    Article  PubMed  CAS  Google Scholar 

  68. Bafekry, A. et al. Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi2N4 nanoribbon with armchair and zigzag edges. J. Phys. D Appl. Phys. 55, 035301 (2022).

    Article  CAS  Google Scholar 

  69. Wu, Y. et al. Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4. npj Comput. Mater. 8, 129 (2022).

    Article  Google Scholar 

  70. Lv, X. et al. Strain modulation of electronic and optical properties of monolayer MoSi2N4. Phys. E 135, 114964 (2022).

    Article  CAS  Google Scholar 

  71. Wang, Q. et al. Efficient ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 5, 71 (2021).

    Article  CAS  Google Scholar 

  72. Zhao, J. et al. Stacking engineering: a boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett. 12, 10190–10196 (2021).

    Article  PubMed  CAS  Google Scholar 

  73. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  74. Tongay, S. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).

    Article  PubMed  Google Scholar 

  75. Cong, C., Shang, J., Wang, Y. & Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018).

    Article  Google Scholar 

  76. Ruppert, C., Aslan, B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  PubMed  CAS  Google Scholar 

  77. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  PubMed  Google Scholar 

  78. Tian, M., Wei, C., Zhang, J., Wang, J. & Yang, R. Electronic, optical, and water solubility properties of two-dimensional layered SnSi2N4 from first principles. Phys. Rev. B 103, 195305 (2021).

    Article  CAS  Google Scholar 

  79. Liu, Y. et al. Atomic-size dependence of the cohesive energy, bandgap, Young’s modulus, and Raman frequency in different MA2Z4: a bond relaxation investigation. Appl. Phys. Lett. 121, 244105 (2022).

    Article  CAS  Google Scholar 

  80. Barma, S., Khan, M. S. H., Islam, M. R. & Hasan, M. T. Intralayer spatial carrier separation capability for visible light driven photocatalytic properties of SnGe2N4-layered nanostructure: a first-principles study. AIP Adv. 13, 075020 (2023).

    Article  CAS  Google Scholar 

  81. Ren, K., Shu, H., Wang, K. & Qin, H. Two-dimensional MX2Y4 systems: ultrahigh carrier transport and excellent hydrogen evolution reaction performances. Phys. Chem. Chem. Phys. 25, 4519–4527 (2023).

    Article  PubMed  CAS  Google Scholar 

  82. Cai, W. et al. The photocatalytic performance of Janus SXSiN2 (X = Cr, Mo, W) monolayers with enhanced carrier migration. Catal. Lett. 154, 6195–6205 (2024).

    Article  CAS  Google Scholar 

  83. Dai, Y., Zhang, Z., Zhao, P. & Cheng, Y. Interlayer-coupling-engineerable flat bands in twisted MoSi2N4 bilayers. J. Phys. Condens. Matter 36, 165501 (2024).

    Article  CAS  Google Scholar 

  84. Sun, M., Fiorentin, M. R., Schwingenschlögl, U. & Palummo, M. Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials. npj 2D Mater. Appl. 6, 81 (2022).

    Article  CAS  Google Scholar 

  85. Ramzan, M. S., Woźniak, T., Kuc, A. & Cocchi, C. Composition‐dependent absorption of radiation in semiconducting MSi2Z4 monolayers. Phys. Status Solidi B 261, 202300570 (2024).

    Article  Google Scholar 

  86. Azizabad, M. N. & Alavi-Rad, H. Quasiparticle and excitonic effects in WSi2N4 monolayer. Phys. Scr. 96, 125826 (2021).

    Article  Google Scholar 

  87. Zhang, J. et al. Ultra-confined phonon polaritons and strongly coupled microcavity exciton polaritons in monolayer MoSi2N4 and WSi2N4. Adv. Sci. 11, 2307691 (2024).

    Article  CAS  Google Scholar 

  88. Yang, J. S. et al. Accurate electronic properties and non-linear optical response of two-dimensional MA2Z4. Nanoscale 13, 5479–5488 (2021).

    Article  PubMed  CAS  Google Scholar 

  89. Kang, L. & Lin, Z. Second harmonic generation of MoSi2N4-type layers. Phys. Rev. B 103, 195404 (2021).

    Article  CAS  Google Scholar 

  90. Wang, X., Ju, W., Wang, D., Li, X. & Wan, J. Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization. Phys. Chem. Chem. Phys. 25, 18247–18258 (2023).

    Article  PubMed  CAS  Google Scholar 

  91. Guo, S.-D., Zhu, Y.-T., Mu, W.-Q. & Ren, W.-C. Intrinsic piezoelectricity in monolayer MSi2N4 (M = Mo, W, Cr, Ti, Zr and Hf). Europhys. Lett. 132, 57002 (2020).

    Article  CAS  Google Scholar 

  92. Guo, S.-D., Mu, W.-Q., Zhu, Y.-T. & Chen, X.-Q. Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VSi2P4. Phys. Chem. Chem. Phys. 22, 28359–28364 (2020).

    Article  PubMed  CAS  Google Scholar 

  93. Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

    Article  PubMed  CAS  Google Scholar 

  94. Guo, X. & Guo, S. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: a first-principles study. J. Semicond. 42, 122002 (2021).

    Article  CAS  Google Scholar 

  95. Gan, W., Ma, X., Liao, J., Xie, T. & Ma, N. First-principles calculation of in-plane and out-of-plane piezoelectric properties of two-dimensional Janus MoSSiX2 (X = N, P, As) monolayers. New J. Chem. 48, 6780–6788 (2024).

    Article  CAS  Google Scholar 

  96. Gan, W. et al. Emergence of in-plane and out-of-plane piezoelectricity in flexible Janus MoXSiN2 (X=S, Se, and Te) monolayers. ACS Appl. Electron. Mater. 6, 5951–5960 (2024).

    CAS  Google Scholar 

  97. Gao, Z., Wu, H., He, Y. & Xiong, K. 2D Janus TeMoZAZ’ (A = Si,Ge; Z,Z’ = N, P, As; Z ≠ Z’): first-principles insight into the electronics, and piezoelectric properties. Adv. Theory Simul. 7, 2400466 (2024).

    Article  CAS  Google Scholar 

  98. Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2022).

    Article  CAS  Google Scholar 

  99. Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article  PubMed  CAS  Google Scholar 

  100. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  PubMed  CAS  Google Scholar 

  102. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  PubMed  CAS  Google Scholar 

  103. Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  Google Scholar 

  104. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  105. Rogee, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article  PubMed  CAS  Google Scholar 

  106. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  PubMed  CAS  Google Scholar 

  107. Zhong, T., Ren, Y., Zhang, Z., Gao, J. & Wu, M. Sliding ferroelectricity in two-dimensional MoA2N4(A = Si or Ge) bilayers: high polarizations and Moiré potentials. J. Mater. Chem. A 9, 19659–19663 (2021).

    Article  CAS  Google Scholar 

  108. Feng, Y. et al. Van der Waals multiferroic tunnel junctions based on sliding multiferroic layered VSi2N4. Phys. Rev. B 109, 085433 (2024).

    Article  CAS  Google Scholar 

  109. Li, Y. Q. et al. Magnetic and ferroelectric manipulation of valley physics in Janus piezoelectric materials. Nano Lett. 23, 10013–10020 (2023).

    Article  PubMed  CAS  Google Scholar 

  110. Liang, Y. et al. Out-of-plane ferroelectricity and multiferroicity in elemental bilayer phosphorene, arsenene, and antimonene. Appl. Phys. Lett. 118, 012905 (2021).

    Article  CAS  Google Scholar 

  111. Ball, P. Computer engineering: feeling the heat. Nature 492, 174–176 (2012).

    Article  PubMed  CAS  Google Scholar 

  112. Luo, Z. et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Zhang, X. et al. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 7, 25923–25929 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Yin, S. et al. Thermal conductivity of few-layer PtS2 and PtSe2 obtained from optothermal Raman spectroscopy. J. Phys. Chem. C 125, 16129–16135 (2021).

    Article  CAS  Google Scholar 

  115. He, C. et al. Unusually high thermal conductivity in suspended monolayer MoSi2N4. Nat. Commun. 15, 4832 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Yu, J., Zhou, J., Wan, X. & Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J. Phys. 23, 033005 (2021).

    Article  CAS  Google Scholar 

  117. Gokhale, A. G. & Jain, A. Cross-plane thermal transport in layered materials. Appl. Phys. Lett. 123, 232202 (2023).

    Article  CAS  Google Scholar 

  118. Yin, Y., Yi, M. & Guo, W. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces 13, 45907–45915 (2021).

    Article  PubMed  CAS  Google Scholar 

  119. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  PubMed  CAS  Google Scholar 

  120. Zhang, C. et al. Thermoelectric properties of monolayer MoSi2N4 and MoGe2N4 with large Seebeck coefficient and high carrier mobility: a first principles study. J. Solid State Chem. 315, 123447 (2022).

    Article  CAS  Google Scholar 

  121. Das, C. et al. A strategic comparison between monolayers of WX2N4(X≐Si, Ge) toward thermoelectric performance and optoelectronic properties. Adv. Theory Simul. 7, 2300981 (2023).

    Article  Google Scholar 

  122. Huang, Y., Zhong, X., Yuan, H. & Chen, H. Thermoelectric performance of MoSi2As4 monolayer. Europhys. Lett. 137, 16002 (2022).

    Article  CAS  Google Scholar 

  123. Liu, W., Xie, Y., Yuan, J. & Chen, Y. Super high-performance 7-atomic-layer thermoelectric material ZrGe2N4. Nanoscale 14, 8797–8805 (2022).

    Article  PubMed  CAS  Google Scholar 

  124. Ding, C.-H. et al. XMoSiN2 (X = S, Se, Te): a novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance. Europhys. Lett. 143, 16002 (2023).

    Article  CAS  Google Scholar 

  125. Gan, S. et al. Thermal transport properties of two-dimensional Janus MoXSiN2 (X = S, Se, and Te). Langmuir 40, 12301–12312 (2024).

    Article  PubMed  CAS  Google Scholar 

  126. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  PubMed  CAS  Google Scholar 

  127. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  128. Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 84, 6078–6081 (2000).

    Article  PubMed  CAS  Google Scholar 

  129. Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).

    Article  PubMed  CAS  Google Scholar 

  130. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).

    Article  Google Scholar 

  131. Shu, Y. et al. Efficient ohmic contact in monolayer CrX2N4 (X = C, Si) based field-effect transistors. Adv. Electron. Mater. 9, 2201056 (2023).

    Article  CAS  Google Scholar 

  132. Li, Y. et al. Electrical contacts in monolayer MoSi2N4 transistors. ACS Appl. Mater. Interfaces 16, 49496–49507 (2024).

    Article  PubMed  CAS  Google Scholar 

  133. Ai, W., Shi, Y., Hu, X., Yang, J. & Sun, L. Tunable Schottky barrier and efficient ohmic contacts in MSi2N4 (M = Mo, W)/2D metal contacts. ACS Appl. Electron. Mater. 5, 5606–5613 (2023).

    Article  CAS  Google Scholar 

  134. Liang, Q. et al. Van der Waals stacking-induced efficient ohmic contacts and the weak Fermi level pinning effect in MoSi2N4 and WSi2N4 contact with two-dimensional metals. Phys. E 149, 115686 (2023).

    Article  CAS  Google Scholar 

  135. Xia, J. et al. Tuneable Schottky contact of MoSi2N4/TaS2 van der Waals heterostructure. Heliyon 9, e20619 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Binh, N. T. T., Nguyen, C. Q., Vu, T. V. & Nguyen, C. V. Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett. 12, 3934–3940 (2021).

    Article  PubMed  CAS  Google Scholar 

  137. Cao, L., Zhou, G., Wang, Q., Ang, L. K. & Ang, Y. S. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett. 118, 013106 (2021).

    Article  CAS  Google Scholar 

  138. Guo, Y., Dong, Y., Cai, X., Liu, L. & Jia, Y. Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field. Phys. Chem. Chem. Phys. 24, 18331–18339 (2022).

    Article  PubMed  CAS  Google Scholar 

  139. He, X., Gao, Z., Zhang, Z., Xiong, K. & He, Y. Simulation studies on robust contacts in V2CT/MoSi2N4 (T = O, F, OH) van der Waals heterojunction nanostructures: implications for optoelectronic devices. ACS Appl. Nano Mater. 6, 18337–18353 (2023).

    Article  CAS  Google Scholar 

  140. He, X., Li, W. Z., Gao, Z., Zhang, Z. H. & He, Y. Achieving real ohmic contact by the dual protection of outer layer atoms and surface functionalization in 2D metal Mxenes/MoSi2N4 heterostructures. J. Mater. Chem. C 11, 4728–4741 (2023).

    Article  CAS  Google Scholar 

  141. Zhang, X. et al. Ohmic contacts in MXene/MoSi2N4 heterojunctions. Appl. Phys. Lett. 123, 023505 (2023).

    Article  CAS  Google Scholar 

  142. Shan, W. et al. sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously. Nano Res. 17, 10227–10234 (2024).

    Article  CAS  Google Scholar 

  143. Shan, W. et al. Suppressing the vdW gap-induced tunneling barrier by constructing interfacial covalent bonds in 2D metal-semiconductor contacts. Adv. Funct. Mater. 35, 2412773 (2024).

    Article  Google Scholar 

  144. Tho, C. C., Fang, S. & Ang, Y. S. Zero-dipole Schottky contact: homologous metal contact to 2D semiconductor. Appl. Electron. Devices 1, 016111 (2025).

    Article  Google Scholar 

  145. Li, X. & Yang, J. First-principles design of spintronics materials. Natl Sci. Rev. 3, 365–381 (2016).

    Article  CAS  Google Scholar 

  146. Zhao, Z., Sun, Z., Li, X. & Yu, Y. First-principles design on multifunctional magnetic VA2Z4-based Janus structures with controllable magnetic anisotropy energy. Phys. B 670, 415369 (2023).

    Article  CAS  Google Scholar 

  147. Li, P., Yang, X., Jiang, Q.-S., Wu, Y.-T. & Xun, W. Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers. Phys. Rev. Mater. 7, 064002 (2023).

    Article  CAS  Google Scholar 

  148. Dey, D., Ray, A. & Yu, L. Intrinsic ferromagnetism and restrictive thermodynamic stability in MA2N4 and Janus VSiGeN4 monolayers. Phys. Rev. Mater. 6, L061002 (2022).

    Article  CAS  Google Scholar 

  149. Zhang, D., Su, M., Zhang, J., Ye, H. & Wang, J. Two-dimensional HfCr2N4 semiconductor with intrinsic room-temperature ferromagnetism and enhanced conductivity via electrostatic doping. Appl. Surf. Sci. 653, 159128 (2024).

    Article  CAS  Google Scholar 

  150. Ye, H. et al. Room-temperature spin valve effect in the TiCr2N4 monolayer. J. Mater. Chem. C 10, 12422–12427 (2022).

    Article  CAS  Google Scholar 

  151. Lei, C. et al. Controllable dual-polarization valley physics in the strain-engineered 2D monolayer of VC2N4. J. Mater. Chem. C 12, 2156–2164 (2024).

    Article  CAS  Google Scholar 

  152. Akanda, M. R. K. & Lake, R. K. Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers. Appl. Phys. Lett. 119, 052402 (2021).

    Article  CAS  Google Scholar 

  153. Sahoo, M. R., Ray, A. & Singh, N. Theoretical insights into the hydrogen evolution reaction on VGe2N4 and NbGe2N4 monolayers. ACS Omega 7, 7837–7844 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhang, J. et al. Prediction of bipolar VSi2As4 and VGe2As4 monolayers with high Curie temperature and strong magnetocrystalline anisotropy. Phys. Rev. B 106, 235401 (2022).

    Article  CAS  Google Scholar 

  155. Wu, X. et al. Magnetic topological insulators with switchable edge and corner states in monolayer VSi2P4. Phys. Rev. B 109, 235407 (2024).

    Article  CAS  Google Scholar 

  156. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  PubMed  CAS  Google Scholar 

  157. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  PubMed  CAS  Google Scholar 

  158. Lu, X., Fei, R., Zhu, L. & Yang, L. Meron-like topological spin defects in monolayer CrCl3. Nat. Commun. 11, 4724 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yang, K., Wang, G., Liu, L., Lu, D. & Wu, H. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B 104, 144416 (2021).

    Article  CAS  Google Scholar 

  160. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  161. Li, S. et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys. Rev. B 102, 235435 (2020).

    Article  CAS  Google Scholar 

  162. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  163. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  PubMed  Google Scholar 

  164. Liu, Y. et al. Valley-contrasting physics in single-Layer CrSi2N4 and CrSi2P4. J. Phys. Chem. Lett. 12, 8341–8346 (2021).

    Article  PubMed  CAS  Google Scholar 

  165. Yang, C., Song, Z., Sun, X. & Lu, J. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys. Rev. B 103, 035308 (2021).

    Article  CAS  Google Scholar 

  166. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  PubMed  Google Scholar 

  167. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

    Article  PubMed  CAS  Google Scholar 

  168. Back, P. et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys. Rev. Lett. 118, 237404 (2017).

    Article  PubMed  Google Scholar 

  169. Ai, H. et al. Theoretical evidence of the spin-valley coupling and valley polarization in two-dimensional MoSi2X4 (X = N, P, and As). Phys. Chem. Chem. Phys. 23, 3144–3151 (2021).

    Article  PubMed  CAS  Google Scholar 

  170. Cui, Q., Zhu, Y., Liang, J., Cui, P. & Yang, H. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B 103, 085421 (2021).

    Article  CAS  Google Scholar 

  171. Guo, S.-D. et al. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B 107, 054414 (2023).

    Article  CAS  Google Scholar 

  172. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  173. Mashtalir, O. et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334–14338 (2014).

    Article  CAS  Google Scholar 

  174. Ross, S. & Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955).

    Article  CAS  Google Scholar 

  175. Khorram, H. G., Sheikhaei, S., Touski, S. B. & Kokabi, A. Field-effect transistor based on MoSi2N4 monolayer for digital logic applications. IEEE Trans. Electron. Devices 71, 7131–7137 (2024).

    Article  CAS  Google Scholar 

  176. Huang, J., Li, P., Ren, X. & Guo, Z.-X. Promising properties of a sub-5-nm monolayer MoSi2N4 transistor. Phys. Rev. Appl. 16, 044022 (2021).

    Article  CAS  Google Scholar 

  177. Sun, X. et al. Performance limit of monolayer MoSi2N4 transistors. J. Mater. Chem. C 9, 14683–14698 (2021).

    Article  CAS  Google Scholar 

  178. Li, Y. et al. Monolayer WSi2N4: a promising channel material for sub-5-nm-gate homogeneous CMOS devices. Phys. Rev. Appl. 20, 064044 (2023).

    Article  CAS  Google Scholar 

  179. Liu, X. & Mao, Y. p-Type high-performance WSi2N4 MOSFETs with the ultrashort scale of sub-5 nm. ACS Appl. Electron. Mater. 5, 6716–6724 (2023).

    Article  CAS  Google Scholar 

  180. Zhao, H. Q. et al. Quantum transport of sub-10 nm monolayer WGe2N4 transistors. ACS Appl. Electron. Mater. 3, 5086–5094 (2021).

    Article  CAS  Google Scholar 

  181. Dong, M.-M., He, H., Wang, C.-K. & Fu, X.-X. Two-dimensional MoSi2As4-based field-effect transistors integrating switching and gas-sensing functions. Nanoscale 15, 9106–9115 (2023).

    Article  PubMed  CAS  Google Scholar 

  182. Nandan, K., Bhowmick, S., Chauhan, Y. S. & Agarwal, A. Designing power-efficient transistors using narrow-bandwidth materials from the MA2Z4 (M=Mo, Cr, Zr, Ti, Hf; A=Si, Ge; Z=N, P, As) monolayer series. Phys. Rev. Appl. 19, 064058 (2023).

    Article  CAS  Google Scholar 

  183. Hasani, N., Shalchian, M., Rajabi-Maram, A. & Touski, S. B. Electrical properties of double-gate field-effect transistor based on MA2N4 (M = Ti, Zr, and Hf; A = Si, Ge, and Sn) monolayers. IEEE Trans. Electron. Devices 70, 5415–5420 (2023).

    Article  CAS  Google Scholar 

  184. Liu, H. et al. Giant tunnel magnetoresistance in two-dimensional van der Waals magnetic tunnel junctions: Ag/CrI3/MoSi2N4/CrI3/Ag. Phys. Rev. B 106, 104429 (2022).

    Article  CAS  Google Scholar 

  185. Zhan, G., Yang, Z., Luo, K., Zhang, S. & Wu, Z. Large magnetoresistance and perfect spin-injection efficiency in two-dimensional strained VSi2N4-based room-temperature magnetic-tunnel-junction devices. Phys. Rev. Appl. 19, 014020 (2023).

    Article  CAS  Google Scholar 

  186. Wu, Q. & Ang, L. K. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett. 120, 022401 (2022).

    Article  CAS  Google Scholar 

  187. Tho, C. C. et al. MA2Z4 family heterostructures: promises and prospects. Appl. Phys. Rev. 10, 041307 (2023).

    Article  CAS  Google Scholar 

  188. Guo, Y. et al. Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells. J. Phys. Chem. C 126, 4677–4683 (2022).

    Article  CAS  Google Scholar 

  189. Liu, Y., Jiang, Z., Jia, J., Robertson, J. & Guo, Y. 2D WSe2/MoSi2N4 type-II heterojunction with improved carrier separation and recombination for photocatalytic water splitting. Appl. Surf. Sci. 611, 155674 (2023).

    Article  CAS  Google Scholar 

  190. Tho, C. C. et al. Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: an exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 10, 202201856 (2023).

    Google Scholar 

  191. Zhang, Q.-K. et al. 2D Janus MoSSe/MoGeSiN4 vdW heterostructures for photovoltaic and photocatalysis applications. J. Alloys Compd. 938, 168708 (2023).

    Article  CAS  Google Scholar 

  192. Liu, Y., Ji, Y. & Li, Y. Multilevel theoretical screening of novel two-dimensional MA2Z4 family for hydrogen evolution. J. Phys. Chem. Lett. 12, 9149–9154 (2021).

    Article  PubMed  CAS  Google Scholar 

  193. Xiao, C. et al. Enhancing the hydrogen evolution reaction by non-precious transition metal (non-metal) atom doping in defective MoSi2N4 monolayer. Appl. Surf. Sci. 563, 150388 (2021).

    Article  CAS  Google Scholar 

  194. Zang, Y. et al. Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo,W): a theoretical prediction. Phys. Rev. Mater. 5, 045801 (2021).

    Article  CAS  Google Scholar 

  195. Wang, Y. et al. Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: a computational study. Nanotechnology 34, 245705 (2023).

    Article  CAS  Google Scholar 

  196. Chen, Y., Tian, S. & Tang, Q. First-principles studies on electrocatalytic activity of novel two-dimensional MA2Z4 monolayers toward oxygen reduction reaction. J. Phys. Chem. C 125, 22581–22590 (2021).

    Article  CAS  Google Scholar 

  197. Lu, S., Zhang, Y., Lou, F., Guo, K. & Yu, Z. Non-precious metal activated MoSi2N4 monolayers for high-performance OER and ORR electrocatalysts: a first-principles study. Appl. Surf. Sci. 579, 152234 (2022).

    Article  CAS  Google Scholar 

  198. Yuan, Y. et al. Single rhodium atom embedded two dimensional MoSi2N4: a promising electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 653, 159361 (2024).

    Article  CAS  Google Scholar 

  199. Qian, W., Chen, Z., Zhang, J. & Yin, L. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: a DFT prediction. J. Mater. Sci. Technol. 99, 215–222 (2022).

    Article  CAS  Google Scholar 

  200. Jia, B. et al. Defect engineering in the MA2Z4 monolayer family for enhancing the hydrogen evolution reaction: first-principles calculations. Sustain. Energy Fuels 7, 164–171 (2023).

    Article  CAS  Google Scholar 

  201. Huan, Y., Zhu, L., Li, N. & Zhang, Y. Controllable syntheses and potential applications of two-dimensional metallic transition metal dichalcogenides. Chin. Sci. Bull. 66, 34–52 (2021).

    Article  Google Scholar 

  202. Rehman, S. U. et al. Novel two-dimensional MC2N4 (M = Cr, Mo, W) monolayers for overall water splitting with high visible-light absorption. Sol. Energy 241, 416–427 (2022).

    Article  Google Scholar 

  203. Chen, J. & Tang, Q. The versatile electronic, magnetic and photo-electro catalytic activity of a new 2D MA2Z4 family. Chem. Eur. J. 27, 9925–9933 (2021).

    Article  PubMed  CAS  Google Scholar 

  204. Liu, M.-Y., He, Y., Li, X. & Xiong, K. Tuning of the electronic and photocatalytic properties of Janus WSiGeZ4 (Z = N, P, and As) monolayers via strain engineering. Phys. Chem. Chem. Phys. 25, 7278–7288 (2023).

    Article  PubMed  CAS  Google Scholar 

  205. Li, X.-H., Zhang, H., Zhang, R.-Z. & Cui, H.-L. Computational investigation on 2D Janus MSiGeN4 with structural, electronic properties, quantum capacitance, and photocatalytic activity. Colloids Surf. A 689, 133712 (2024).

    Article  CAS  Google Scholar 

  206. Liu, Y. et al. Internal electric fields in asymmetric single-layer lattices for enhancing photocatalytic solar-to-hydrogen efficiency. J. Mater. Chem. A 11, 21713–21720 (2023).

    Article  CAS  Google Scholar 

  207. Zeng, J. et al. Boosting the photocatalytic hydrogen evolution performance of monolayer C2N coupled with MoSi2N4: density-functional theory calculations. Phys. Chem. Chem. Phys. 23, 8318–8325 (2021).

    Article  PubMed  CAS  Google Scholar 

  208. He, Y. et al. High hydrogen production in the InSe/MoSi2N4 van der Waals heterostructure for overall water splitting. Phys. Chem. Chem. Phys. 24, 2110–2117 (2022).

    Article  PubMed  CAS  Google Scholar 

  209. Li, R.-X. et al. MoSi2N4/CrS2 van der Waals heterostructure with high solar-to-hydrogen efficiency. Phys. E 144, 115443 (2022).

    Article  CAS  Google Scholar 

  210. Shi, L. et al. Two-dimensional type-II MSi2N4/InS (M = Mo, W) heterostructures for photocatalysis. Appl. Phys. Lett. 123, 131102 (2023).

    Article  CAS  Google Scholar 

  211. Yang, Y. et al. Two-dimensional Janus SnS/MoSi2N4 structure for high-efficiency photocatalytic splitting. Comput. Mater. Sci. 234, 112781 (2024).

    Article  CAS  Google Scholar 

  212. Chen, X. et al. A direct Z-scheme MoSi2N4/BlueP vdW heterostructure for photocatalytic overall water splitting. J. Phys. D Appl. Phys. 55, 215502 (2022).

    Article  CAS  Google Scholar 

  213. Huang, X. et al. High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction. J. Mater. Sci. 57, 16404–16417 (2022).

    Article  CAS  Google Scholar 

  214. Jalil, A., Zhao, T., Kanwal, A. & Ahmed, I. Prediction of direct Z-scheme H and H́-phase of MoSi2N4/MoSX (X = S, Se) van der Waals heterostructures: a promising candidate for photocatalysis. Chem. Eng. J. 470, 144239 (2023).

    Article  CAS  Google Scholar 

  215. Xu, L. et al. Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures. Int. J. Hydrog. Energy 48, 18301–18314 (2023).

    Article  CAS  Google Scholar 

  216. Tian, M., Wei, C., Zhang, J. & Wang, Z. Electronic properties and storage capability of two-dimensional nitridosilicate MnSi2N4 from first-principles. AIP Adv. 12, 115127 (2022).

    Article  CAS  Google Scholar 

  217. Wang, Z. et al. Heavy 2D VSi2N4: high capacity and full battery open-circuit voltage as Li/Na-ion batteries anode. Appl. Surf. Sci. 593, 153354 (2022).

    Article  CAS  Google Scholar 

  218. Yuan, S. et al. Two-dimensional VSi2P4 as an anode material for Li-ion batteries. Mater. Chem. Phys. 287, 126323 (2022).

    Article  CAS  Google Scholar 

  219. Gao, S. et al. Two-dimensional van der Waals layered VSi2N4 as anode materials for alkali metal (Li, Na and K) ion batteries. J. Phys. Chem. Solids 178, 111339 (2023).

    Article  CAS  Google Scholar 

  220. Liu, Y., Ji, Y., Ding, Y.-M., Li, Y. & Lee, S.-T. Theoretical prediction of novel two-dimensional MA2Z4 family for Li/Na battery anodes. 2D Mater. 10, 025020 (2023).

    Article  CAS  Google Scholar 

  221. Peng, J. & Wang, Z. Y. Monolayer TiSi2P4 as a high-performance anode for Na-ion batteries. J. Phys. Condens. Matter 35, 455702 (2023).

    Article  CAS  Google Scholar 

  222. Ahmad, S., Din, H. U., Nguyen, C. Q., Nguyen, S.-T. & Nguyen, C. Alkali to alkaline earth metals: a DFT study of monolayer TiSi2N4 for metal ion batteries. Dalton Trans. 53, 3785–3796 (2024).

    Article  PubMed  CAS  Google Scholar 

  223. Dai, Z., Zhang, M., Bai, L., Wang, J. & Niu, L. A first-principles study of TiA2P4 (A = Si and Ge) monolayers as excellent electrode materials for Na-ion batteries. Comput. Mater. Sci. 233, 112728 (2024).

    Article  CAS  Google Scholar 

  224. Du, B. et al. Theoretical prediction of two-dimensional CrSi2N4 as a potential anode material for Na-ion batteries. J. Phys. D Appl. Phys. 57, 235501 (2024).

    Article  CAS  Google Scholar 

  225. Wei, F. et al. First-principles computational study of Janus van der Waals layered VSiGeN4 as anode material for Li-ion battery. Colloids Surf. A 681, 132777 (2024).

    Article  CAS  Google Scholar 

  226. Mukherjee, S., Kavalsky, L. & Singh, C. V. Ultrahigh storage and fast diffusion of Na and K in blue phosphorene anodes. ACS Appl. Mater. Interfaces 10, 8630–8639 (2018).

    Article  PubMed  CAS  Google Scholar 

  227. Ye, X.-J., Li, T.-K., He, J.-J., Wang, X.-F. & Liu, C.-S. Magnesene: a theoretical prediction of a metallic, fast, high-capacity, and reversible anode material for sodium-ion batteries. Nanoscale 14, 6118–6125 (2022).

    Article  PubMed  CAS  Google Scholar 

  228. Lv, X. et al. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys. Chem. Chem. Phys. 22, 8902–8912 (2020).

    Article  PubMed  CAS  Google Scholar 

  229. Huang, H., Wu, H.-H., Chi, C., Huang, B. & Zhang, T.-Y. Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J. Mater. Chem. A 7, 8897–8904 (2019).

    Article  CAS  Google Scholar 

  230. Cheng, L.-R., Lin, Z.-Z., Li, X.-M. & Chen, X. 2D MoSi2N4 as electrode material of Li-air battery — a DFT study. J. Nanopart. Res. 25, 55 (2023).

    Article  CAS  Google Scholar 

  231. Li, X.-M., Lin, Z.-Z., Cheng, L.-R. & Chen, X. Layered MoSi2N4 as electrode material of Zn-Air battery. Phys. Status Solidi RRL 16, 2200007 (2022).

    Article  CAS  Google Scholar 

  232. Wang, Y. P., Li, Z. S., Cao, X. R., Wu, S. Q. & Zhu, Z. Z. Monolayer MSi2P4 (M = V, Nb, and Ta) as highly efficient sulfur host materials for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 14, 27833–27841 (2022).

    Article  PubMed  CAS  Google Scholar 

  233. Du, J., Zhou, X., Cheng, X. & Jiang, G. Theoretical evaluation of monolayer MA2Z4 (M = Ti, Zr, or Hf; A = Si or Ge; and Z = P or As) family as promising candidates for lithium-sulfur batteries. J. Colloid Interface Sci. 678, 150–158 (2025).

    Article  PubMed  CAS  Google Scholar 

  234. Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    Article  CAS  Google Scholar 

  235. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  PubMed  CAS  Google Scholar 

  236. Zhang, Z. et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258–1264 (2022).

    Article  PubMed  CAS  Google Scholar 

  237. Qi, J. et al. Stacking-controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%. Adv. Mater. 36, 2303122 (2024).

    Article  CAS  Google Scholar 

  238. Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99–104 (2024).

    Article  PubMed  CAS  Google Scholar 

  239. Wang, D. et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small 15, 1804404 (2019).

    Article  Google Scholar 

  240. Zhang, X. et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm 17, 4026–4032 (2015).

    Article  CAS  Google Scholar 

  241. Zhou, J. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 22, 450–458 (2023).

    Article  PubMed  CAS  Google Scholar 

  242. Chen, P. et al. Tailoring the magnetic exchange interaction in MnBi2Te4 superlattices via the intercalation of ferromagnetic layers. Nat. Electron. 6, 18–27 (2023).

    CAS  Google Scholar 

  243. Chen, W. et al. Millisecond conversion of metastable 2D materials by flash Joule heating. ACS Nano 15, 1282–1290 (2021).

    Article  PubMed  CAS  Google Scholar 

  244. Ding, H. et al. Progress in structural tailoring and properties of ternary layered ceramics. J. Inorg. Mater. 38, 845–884 (2023).

    Article  CAS  Google Scholar 

  245. Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).

    Article  PubMed  CAS  Google Scholar 

  246. Du, Z. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492–496 (2020).

    Article  PubMed  CAS  Google Scholar 

  247. Jin, W. et al. Two-dimensional MoSi2N4 family: progress and perspectives form theory. J. Phys. Chem. Lett. 15, 10284–10294 (2024).

    Article  PubMed  CAS  Google Scholar 

  248. Al-Maeeni, A., Lazarev, M., Kazeev, N., Novoselov, K. S. & Ustyuzhanin, A. Review on automated 2D material design. 2D Mater. 11, 032002 (2024).

    Article  Google Scholar 

  249. Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  PubMed  CAS  Google Scholar 

  251. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Zhu, Q. et al. Automated synthesis of oxygen-producing catalysts from Martian meteorites by a robotic AI chemist. Nat. Synth. 3, 319–328 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

W.R. thanks H. M. Cheng, the numerous graduate students and post-doctoral fellows, and collaborators at Institute of Metal Research, CAS, and elsewhere, who helped in the exploration of MoSi2N4 materials family. The authors thanks Z. B. Liu for valuable discussions on materials structure. Research on MoSi2N4 materials family was supported by the National Natural Science Foundation of China (numbers 52188101, 51325205, 51290273, 52122202 and 52402064), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (number ZDBS-LY-JSC027), the LiaoNing Revitalization Talents Program (numbers XLYC2201003 and XLYC2403170), the China Postdoctoral Science Foundation (2023M743577), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (GZC20232751).

Author information

Authors and Affiliations

Authors

Contributions

W.R. conceived the manuscript, wrote the manuscript with T.Z., and revised and finalized the manuscript. C.X. discussed and helped with the manuscript.

Corresponding author

Correspondence to Wencai Ren  (任文才).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yee Sin Ang, Daniela Gogova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Xu, C. & Ren, W. The van der Waals MoSi2N4 materials family. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00832-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00832-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing