Abstract
Two-dimensional materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides, are normally limited by the known 3D bulk materials. The design and synthesis of entirely new 2D materials, particularly van der Waals (vdW) layered materials, would significantly expand the properties and functionalities of 2D materials. In 2020, a novel vdW layered material, MoSi2N4, was synthesized by passivating the surface of 2D non-layered molybdenum nitride with the addition of elemental silicon, which has since opened up a new vdW materials family with the general formula MA2Z4. To date, over a hundred MA2Z4 materials and their derivatives have been predicted, in addition to the synthesized MSi2N4 (Mâ=âMo, W), encompassing metals, semiconductors, superconductors, topological insulators, ferroelectrics and ferromagnets, owing to the diversity of elements and structures in MA2Z4. Such materials exhibit a variety of exceptional electronic, optical, thermal, mechanical, ferroelectric and magnetic properties, and they are promising for applications in electronic and optoelectronic devices, electrocatalysis, photocatalysis and batteries. Over the past 4âyears, the MoSi2N4 materials family has rapidly emerged as a key research frontier in materials science. In this Review, we summarize recent advances in the investigation of materials in the MoSi2N4 family, covering their crystal structure, synthesis methods, fundamental properties and potential applications, and provide an outlook on future research directions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666â669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451â10453 (2005).
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225â6331 (2017).
Kaur, H. & Coleman, J. N. Liquid-phase exfoliation of nonlayered non-van-der-Waals crystals into nanoplatelets. Adv. Mater. 34, 2202164 (2022).
Balan, A. P. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164â200 (2022).
Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248â4253 (2011).
Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149â163 (2019).
Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744â2756 (2015).
Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091â6133 (2018).
Novoselov, K. S. Discovery of 2D van der Waals layered MoSi2N4 family. Natl Sci. Rev. 7, 1842â1844 (2020).
Latychevskaia, T., Bandurin, D. A. & Novoselov, K. S. A new family of septuple-layer 2D materials of MoSi2N4-like crystals. Nat. Rev. Phys. 6, 426â438 (2024).
Yin, Y., Gong, Q., Yi, M. & Guo, W. Emerging versatile two-dimensional MoSi2N4 family. Adv. Funct. Mater. 33, 2214050 (2024).
Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399â459 (1984).
Zhou, N., Yang. R. & Zhai. T. Two-dimensional non-layered materials. Mater. Today Nano 8, 100051 (2019).
Hong, Y.-L. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670â674 (2020).
Wang, L. et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 12, 2361 (2021).
Qiu, X. et al. High hole mobilities in two dimensional monolayer MSi2Z4 (M = Mo/W; Z = P, As, Sb) for solar cells. J. Mater. Chem. C 10, 15483â15490 (2022).
Mortazavi, B., Shojaei, F., Javvaji, B., Rabczuk, T. & Zhuang, X. Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Mater. Today Energy 22, 100839 (2021).
Wang, Y. et al. Janus MSiSnN4(M = Mo; W): high efficiently overall water splitting photocatalyst triggered by the intrinsic electric field. Mol. Catal. 557, 113964 (2024).
Chen, T. et al. Optoelectronic properties, stability, and thermodynamic properties of 2D XSn2N4 (X = Cr, Mo, W) monolayers. Phys. B Condens. Matter 684, 415976 (2024).
Rahman, A. U., Hussain, G., Khan, I., Samad, A. & Ouyang, Z. Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials. Comput. Mater. Sci. 255, 113899 (2025).
Verzola, I. M. R. et al. Nontrivial topology in monolayer MA2Z4 (M = Ti, Zr, or Hf; A = Si or Ge; and Z = N, P, As, Sb, or Bi). J. Phys. Chem. C 128, 6829â6835 (2024).
Jappor, H. R. et al. Prediction of 2D XC2N4 (X= Ti, Mo, and W) monolayers with high mobility as an encouraging candidate for photovoltaic devices. Surf. Interfaces 54, 105261 (2024).
Zhao, Z., Duan, X., Fang, X., Wang, X. & Mi, W. Prediction of electronic structure and magnetic anisotropy of two-dimensional MSi2N4 (M=3d transition-metal) monolayers. Appl. Surf. Sci. 611, 155693 (2023).
Ding, Y. & Wang, Y. Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = YâCd and HfâHg) nanosheets and their versatile electronic and magnetic properties. J. Phys. Chem. C 125, 19580â19591 (2021).
Varjovi, M. J., Durgun, E., Pacchioni, G. & Tosoni, S. Stable distorted T phase of MSi2N4 (M = Ru and Os) monolayers: first-principles insights into structural, vibrational, mechanical, electronic, and optical properties. Phys. Rev. Mater. 8, 074004 (2024).
Varjovi, M. J., Kilic, M. E. & Durgun, E. First-principles investigation on the structural, vibrational, mechanical, electronic, and optical properties of MSi2Z4 (M: Pd and Pt, Z: N and P) monolayers. Phys. Rev. Mater. 7, 034002 (2023).
Ding, Y. et al. Two-dimensional half-metals MSi2N4 (M = Al, Ga, In, Tl) with intrinsic p-type ferromagnetism and ultrawide bandgaps. Phys. Chem. Chem. Phys. 26, 13327â13334 (2024).
Varjovi, M. J., Ershadrad, S., Sanyal, B. & Tosoni, S. Two-dimensional MSi2N4 (M = Ge, Sn, and Pb) monolayers: promising new materials for optoelectronic applications. 2D Mater. 11, 015016 (2023).
Dat, V. D. & Vu, T. V. Layered post-transition-metal dichalcogenide SnGe2N4 as a promising photoelectric material: a DFT study. RSC Adv. 12, 10249â10257 (2022).
Liu, W. et al. Two-dimensional rare-earth-based half-metals with topological bimerons. Nano Lett. 24, 15473â15480 (2024).
Lu, C. et al. Monolayer ThSi2N4: an indirect-gap semiconductor with ultra-high carrier mobility. Phys. Rev. B 108, 205427 (2023).
Zhang, B. et al. The high electron mobility for spin-down channel of two-dimensional spin-polarized half-metallic ferromagnetic EuSi2N4 monolayer. J. Comput. Chem. 45, 2678â2689 (2024).
Guo, S.-D., Mu, W.-Q., Zhu, Y.-T., Han, R.-Y. & Ren, W.-C. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C 9, 2464â2473 (2021).
Liu, Z. et al. Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds. Natl Sci. Rev. 10, nwac273 (2023).
Du, Y. et al. Thermal conductivity in MoSi2N4(MoN)n: insights into phonon scattering and transport. Int. Commun. Heat Mass Transf. 159, 108361 (2024).
Zhu, Y., Li, P.-Y., Yuan, J.-H., Zhang, P. & Wang, J. First-principles prediction of 2D semiconductors MAN3 (M = V, Nb, Ta; A = Si, Ge) from the MA2N4 family: implication for optoelectronics applications. ACS Appl. Nano Mater. 7, 7300â7311 (2024).
Sibatov, R. T., Meftakhutdinov, R. M. & Kochaev, A. I. Asymmetric XMoSiN2 (X=S, Se, Te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics. Appl. Surf. Sci. 585, 152465 (2022).
Zhao, J., Qi, Y., Yao, C. & Zeng, H. Tunable valley-spin splitting in a Janus XMSiN2 monolayer (X = S, Se; M = Mo, Cr) and giant valley polarization via vanadium doping. Phys. Rev. B 109, 035408 (2024).
Yuan, G. et al. First-principles calculations of 2D Janus WSSiN2 monolayer for water splitting. ACS Appl. Nano Mater. 6, 1956â1964 (2023).
Gao, Z., He, Y. & Xiong, K. Two-dimensional SPdAZ2 (A = Si, Ge; Z = N, P, As) monolayers with an intrinsic electric field for high-performance photocatalysis. Phys. Chem. Chem. Phys. 26, 185â197 (2024).
Gao, Z., He, X., Li, W., He, Y. & Xiong, K. First principles prediction of two-dimensional Janus STiXY2 (X = Si, Ge; Y = N, P, As) materials. Dalton Trans. 52, 8322â8331 (2023).
Guo, S. et al. Spatially confined microcells: a path toward TMD catalyst design. Chem. Rev. 124, 6952â7006 (2024).
Xue, G. et al. Large-area epitaxial growth of transition metal dichalcogenides. Chem. Rev. 124, 9785â9865 (2024).
Guo, S.-D., Zhu, Y.-T., Mu, W.-Q., Wang, L. & Chen, X.-Q. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M=Mo and W). Comput. Mater. Sci. 188, 110223 (2021).
Ding, Y. & Wang, Y. Two-dimensional Tâ²-phase MA2N4 (M=Mo/W, A=Si/Ge) nanosheets: first-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction. Appl. Surf. Sci. 627, 157256 (2023).
Yu, Y., Zhou, J., Guo, Z. & Sun, Z. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces 13, 28090â28097 (2021).
Rezavand, A., Ghobadi, N. & Behnamghader, B. Electronic and spintronic properties of Janus MSi2PxAsy (M = Mo, W) monolayers. Phys. Rev. B 106, 035417 (2022).
Yin, Y., Gong, Q., Yi, M. & Guo, W. Monolayer polar metals with large piezoelectricity derived from MoSi2N4. Mater. Horiz. 10, 5177â5184 (2023).
Ding, Y. & Wang, Y. First-principles investigation of two-dimensional iron molybdenum nitride: a double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties. Front. Phys. 19, 63207 (2024).
Tho, C. C. et al. Ultrathick MA2N4(MâN) intercalated monolayers with sublayerâprotected Fermi surface conduction states: interconnect and metal contact applications. Adv. Phys. Res. 3, 2300156 (2024).
Yan, L. et al. Theoretical prediction of two-dimensional 1TâMSiN3 (M=V,Nb) with direct bandgap and long carrier lifetime. Phys. Rev. B 108, 155309 (2023).
Wang, X., Liang, L., Wang, X., Wang, H. & Li, X. Carrier-tunable magnetism and valleys in VSiZ3 monolayers. Phys. Rev. Appl. 22, 054029 (2024).
Cui, Z. et al. Two-dimensional XYN3 (X=V, Nb, Ta; Y=Si, Ge): promising optoelectronic materials in photovoltaic photodetectors. Surf. Interfaces 54, 105160 (2024).
Nguyen, S.-T., Cuong, P. V., Cuong, N. Q. & Nguyen, C. V. First principles prediction of two-dimensional Janus XMoGeN2 (X = S, Se and Te) materials. Dalton Trans. 51, 14338â14344 (2022).
Rezavand, A. & Ghobadi, N. First-principle study on quintuple-atomic-layer Janus MTeSiX2 (M= Mo, W; X=N, P, As) monolayers with intrinsic Rashba spin-splitting and Mexican hat dispersion. Mater. Sci. Semicond. Process. 152, 107061 (2022).
Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135â1141 (2015).
Wang, Z. et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29, 1700364 (2017).
Xu, C. et al. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11, 5906â5914 (2017).
Xu, C. et al. Superhigh uniform magnetic Cr substitution in a 2D Mo2C superconductor for a macroscopic-scale Kondo effect. Adv. Mater. 32, 2002825 (2020).
Huang, D. et al. MoSi2N4: a 2D regime with strong excitonâphonon coupling. Adv. Opt. Mater. 10, 2102612 (2022).
Huang, D. et al. Exciton selfâtrapping effect in MoSi2N4 for modulating nonlinear optical process. Adv. Opt. Mater. 11, 2202622 (2023).
Mortazavi, B. et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 82, 105716 (2021).
Priydarshi, A., Chauhan, Y. S., Bhowmick, S. & Agarwal, A. Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P). Nanoscale 14, 11988â11997 (2022).
Ren, Y.-T. et al. Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: promising spintronic properties and band alignments. Phys. Rev. Mater. 6, 064006 (2022).
Qiao, L. et al. Giant carrier mobility in a room-temperature ferromagnetic VSi2N4 monolayer. Nano Lett. 24, 6403â6409 (2024).
Yan, L. et al. Surface passivation induced a significant enhancement of superconductivity in layered two-dimensional MSi2N4 (M = Ta and Nb) materials. Nanoscale 13, 18947â18954 (2021).
Bafekry, A. et al. Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi2N4 nanoribbon with armchair and zigzag edges. J. Phys. D Appl. Phys. 55, 035301 (2022).
Wu, Y. et al. Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4. npj Comput. Mater. 8, 129 (2022).
Lv, X. et al. Strain modulation of electronic and optical properties of monolayer MoSi2N4. Phys. E 135, 114964 (2022).
Wang, Q. et al. Efficient ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 5, 71 (2021).
Zhao, J. et al. Stacking engineering: a boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett. 12, 10190â10196 (2021).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Tongay, S. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).
Cong, C., Shang, J., Wang, Y. & Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018).
Ruppert, C., Aslan, B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231â6236 (2014).
Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21â25 (2017).
Tian, M., Wei, C., Zhang, J., Wang, J. & Yang, R. Electronic, optical, and water solubility properties of two-dimensional layered SnSi2N4 from first principles. Phys. Rev. B 103, 195305 (2021).
Liu, Y. et al. Atomic-size dependence of the cohesive energy, bandgap, Youngâs modulus, and Raman frequency in different MA2Z4: a bond relaxation investigation. Appl. Phys. Lett. 121, 244105 (2022).
Barma, S., Khan, M. S. H., Islam, M. R. & Hasan, M. T. Intralayer spatial carrier separation capability for visible light driven photocatalytic properties of SnGe2N4-layered nanostructure: a first-principles study. AIP Adv. 13, 075020 (2023).
Ren, K., Shu, H., Wang, K. & Qin, H. Two-dimensional MX2Y4 systems: ultrahigh carrier transport and excellent hydrogen evolution reaction performances. Phys. Chem. Chem. Phys. 25, 4519â4527 (2023).
Cai, W. et al. The photocatalytic performance of Janus SXSiN2 (X = Cr, Mo, W) monolayers with enhanced carrier migration. Catal. Lett. 154, 6195â6205 (2024).
Dai, Y., Zhang, Z., Zhao, P. & Cheng, Y. Interlayer-coupling-engineerable flat bands in twisted MoSi2N4 bilayers. J. Phys. Condens. Matter 36, 165501 (2024).
Sun, M., Fiorentin, M. R., Schwingenschlögl, U. & Palummo, M. Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials. npj 2D Mater. Appl. 6, 81 (2022).
Ramzan, M. S., Woźniak, T., Kuc, A. & Cocchi, C. Compositionâdependent absorption of radiation in semiconducting MSi2Z4 monolayers. Phys. Status Solidi B 261, 202300570 (2024).
Azizabad, M. N. & Alavi-Rad, H. Quasiparticle and excitonic effects in WSi2N4 monolayer. Phys. Scr. 96, 125826 (2021).
Zhang, J. et al. Ultra-confined phonon polaritons and strongly coupled microcavity exciton polaritons in monolayer MoSi2N4 and WSi2N4. Adv. Sci. 11, 2307691 (2024).
Yang, J. S. et al. Accurate electronic properties and non-linear optical response of two-dimensional MA2Z4. Nanoscale 13, 5479â5488 (2021).
Kang, L. & Lin, Z. Second harmonic generation of MoSi2N4-type layers. Phys. Rev. B 103, 195404 (2021).
Wang, X., Ju, W., Wang, D., Li, X. & Wan, J. Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization. Phys. Chem. Chem. Phys. 25, 18247â18258 (2023).
Guo, S.-D., Zhu, Y.-T., Mu, W.-Q. & Ren, W.-C. Intrinsic piezoelectricity in monolayer MSi2N4 (M = Mo, W, Cr, Ti, Zr and Hf). Europhys. Lett. 132, 57002 (2020).
Guo, S.-D., Mu, W.-Q., Zhu, Y.-T. & Chen, X.-Q. Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VSi2P4. Phys. Chem. Chem. Phys. 22, 28359â28364 (2020).
Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885â9891 (2015).
Guo, X. & Guo, S. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: a first-principles study. J. Semicond. 42, 122002 (2021).
Gan, W., Ma, X., Liao, J., Xie, T. & Ma, N. First-principles calculation of in-plane and out-of-plane piezoelectric properties of two-dimensional Janus MoSSiX2 (X = N, P, As) monolayers. New J. Chem. 48, 6780â6788 (2024).
Gan, W. et al. Emergence of in-plane and out-of-plane piezoelectricity in flexible Janus MoXSiN2 (X=S, Se, and Te) monolayers. ACS Appl. Electron. Mater. 6, 5951â5960 (2024).
Gao, Z., Wu, H., He, Y. & Xiong, K. 2D Janus TeMoZAZâ (A = Si,Ge; Z,Zâ = N, P, As; Z â Zâ): first-principles insight into the electronics, and piezoelectric properties. Adv. Theory Simul. 7, 2400466 (2024).
Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25â40 (2022).
Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542â552 (2023).
Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382â6388 (2017).
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336â339 (2018).
Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160â7164 (2018).
Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462â1466 (2021).
Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458â1462 (2021).
Rogee, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973â978 (2022).
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367â371 (2022).
Zhong, T., Ren, Y., Zhang, Z., Gao, J. & Wu, M. Sliding ferroelectricity in two-dimensional MoA2N4(A = Si or Ge) bilayers: high polarizations and Moiré potentials. J. Mater. Chem. A 9, 19659â19663 (2021).
Feng, Y. et al. Van der Waals multiferroic tunnel junctions based on sliding multiferroic layered VSi2N4. Phys. Rev. B 109, 085433 (2024).
Li, Y. Q. et al. Magnetic and ferroelectric manipulation of valley physics in Janus piezoelectric materials. Nano Lett. 23, 10013â10020 (2023).
Liang, Y. et al. Out-of-plane ferroelectricity and multiferroicity in elemental bilayer phosphorene, arsenene, and antimonene. Appl. Phys. Lett. 118, 012905 (2021).
Ball, P. Computer engineering: feeling the heat. Nature 492, 174â176 (2012).
Luo, Z. et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).
Zhang, X. et al. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 7, 25923â25929 (2015).
Yin, S. et al. Thermal conductivity of few-layer PtS2 and PtSe2 obtained from optothermal Raman spectroscopy. J. Phys. Chem. C 125, 16129â16135 (2021).
He, C. et al. Unusually high thermal conductivity in suspended monolayer MoSi2N4. Nat. Commun. 15, 4832 (2024).
Yu, J., Zhou, J., Wan, X. & Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J. Phys. 23, 033005 (2021).
Gokhale, A. G. & Jain, A. Cross-plane thermal transport in layered materials. Appl. Phys. Lett. 123, 232202 (2023).
Yin, Y., Yi, M. & Guo, W. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces 13, 45907â45915 (2021).
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105â114 (2008).
Zhang, C. et al. Thermoelectric properties of monolayer MoSi2N4 and MoGe2N4 with large Seebeck coefficient and high carrier mobility: a first principles study. J. Solid State Chem. 315, 123447 (2022).
Das, C. et al. A strategic comparison between monolayers of WX2N4(XâSi, Ge) toward thermoelectric performance and optoelectronic properties. Adv. Theory Simul. 7, 2300981 (2023).
Huang, Y., Zhong, X., Yuan, H. & Chen, H. Thermoelectric performance of MoSi2As4 monolayer. Europhys. Lett. 137, 16002 (2022).
Liu, W., Xie, Y., Yuan, J. & Chen, Y. Super high-performance 7-atomic-layer thermoelectric material ZrGe2N4. Nanoscale 14, 8797â8805 (2022).
Ding, C.-H. et al. XMoSiN2 (X = S, Se, Te): a novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance. Europhys. Lett. 143, 16002 (2023).
Gan, S. et al. Thermal transport properties of two-dimensional Janus MoXSiN2 (X = S, Se, and Te). Langmuir 40, 12301â12312 (2024).
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195â1205 (2015).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 84, 6078â6081 (2000).
Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696â700 (2018).
Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).
Shu, Y. et al. Efficient ohmic contact in monolayer CrX2N4 (X = C, Si) based field-effect transistors. Adv. Electron. Mater. 9, 2201056 (2023).
Li, Y. et al. Electrical contacts in monolayer MoSi2N4 transistors. ACS Appl. Mater. Interfaces 16, 49496â49507 (2024).
Ai, W., Shi, Y., Hu, X., Yang, J. & Sun, L. Tunable Schottky barrier and efficient ohmic contacts in MSi2N4 (M = Mo, W)/2D metal contacts. ACS Appl. Electron. Mater. 5, 5606â5613 (2023).
Liang, Q. et al. Van der Waals stacking-induced efficient ohmic contacts and the weak Fermi level pinning effect in MoSi2N4 and WSi2N4 contact with two-dimensional metals. Phys. E 149, 115686 (2023).
Xia, J. et al. Tuneable Schottky contact of MoSi2N4/TaS2 van der Waals heterostructure. Heliyon 9, e20619 (2023).
Binh, N. T. T., Nguyen, C. Q., Vu, T. V. & Nguyen, C. V. Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett. 12, 3934â3940 (2021).
Cao, L., Zhou, G., Wang, Q., Ang, L. K. & Ang, Y. S. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett. 118, 013106 (2021).
Guo, Y., Dong, Y., Cai, X., Liu, L. & Jia, Y. Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field. Phys. Chem. Chem. Phys. 24, 18331â18339 (2022).
He, X., Gao, Z., Zhang, Z., Xiong, K. & He, Y. Simulation studies on robust contacts in V2CT/MoSi2N4 (T = O, F, OH) van der Waals heterojunction nanostructures: implications for optoelectronic devices. ACS Appl. Nano Mater. 6, 18337â18353 (2023).
He, X., Li, W. Z., Gao, Z., Zhang, Z. H. & He, Y. Achieving real ohmic contact by the dual protection of outer layer atoms and surface functionalization in 2D metal Mxenes/MoSi2N4 heterostructures. J. Mater. Chem. C 11, 4728â4741 (2023).
Zhang, X. et al. Ohmic contacts in MXene/MoSi2N4 heterojunctions. Appl. Phys. Lett. 123, 023505 (2023).
Shan, W. et al. sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously. Nano Res. 17, 10227â10234 (2024).
Shan, W. et al. Suppressing the vdW gap-induced tunneling barrier by constructing interfacial covalent bonds in 2D metal-semiconductor contacts. Adv. Funct. Mater. 35, 2412773 (2024).
Tho, C. C., Fang, S. & Ang, Y. S. Zero-dipole Schottky contact: homologous metal contact to 2D semiconductor. Appl. Electron. Devices 1, 016111 (2025).
Li, X. & Yang, J. First-principles design of spintronics materials. Natl Sci. Rev. 3, 365â381 (2016).
Zhao, Z., Sun, Z., Li, X. & Yu, Y. First-principles design on multifunctional magnetic VA2Z4-based Janus structures with controllable magnetic anisotropy energy. Phys. B 670, 415369 (2023).
Li, P., Yang, X., Jiang, Q.-S., Wu, Y.-T. & Xun, W. Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers. Phys. Rev. Mater. 7, 064002 (2023).
Dey, D., Ray, A. & Yu, L. Intrinsic ferromagnetism and restrictive thermodynamic stability in MA2N4 and Janus VSiGeN4 monolayers. Phys. Rev. Mater. 6, L061002 (2022).
Zhang, D., Su, M., Zhang, J., Ye, H. & Wang, J. Two-dimensional HfCr2N4 semiconductor with intrinsic room-temperature ferromagnetism and enhanced conductivity via electrostatic doping. Appl. Surf. Sci. 653, 159128 (2024).
Ye, H. et al. Room-temperature spin valve effect in the TiCr2N4 monolayer. J. Mater. Chem. C 10, 12422â12427 (2022).
Lei, C. et al. Controllable dual-polarization valley physics in the strain-engineered 2D monolayer of VC2N4. J. Mater. Chem. C 12, 2156â2164 (2024).
Akanda, M. R. K. & Lake, R. K. Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers. Appl. Phys. Lett. 119, 052402 (2021).
Sahoo, M. R., Ray, A. & Singh, N. Theoretical insights into the hydrogen evolution reaction on VGe2N4 and NbGe2N4 monolayers. ACS Omega 7, 7837â7844 (2022).
Zhang, J. et al. Prediction of bipolar VSi2As4 and VGe2As4 monolayers with high Curie temperature and strong magnetocrystalline anisotropy. Phys. Rev. B 106, 235401 (2022).
Wu, X. et al. Magnetic topological insulators with switchable edge and corner states in monolayer VSi2P4. Phys. Rev. B 109, 235407 (2024).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270â273 (2017).
Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778â782 (2018).
Lu, X., Fei, R., Zhu, L. & Yang, L. Meron-like topological spin defects in monolayer CrCl3. Nat. Commun. 11, 4724 (2020).
Yang, K., Wang, G., Liu, L., Lu, D. & Wu, H. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B 104, 144416 (2021).
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
Li, S. et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys. Rev. B 102, 235435 (2020).
Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Liu, Y. et al. Valley-contrasting physics in single-Layer CrSi2N4 and CrSi2P4. J. Phys. Chem. Lett. 12, 8341â8346 (2021).
Yang, C., Song, Z., Sun, X. & Lu, J. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys. Rev. B 103, 035308 (2021).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).
Back, P. et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys. Rev. Lett. 118, 237404 (2017).
Ai, H. et al. Theoretical evidence of the spin-valley coupling and valley polarization in two-dimensional MoSi2X4 (X = N, P, and As). Phys. Chem. Chem. Phys. 23, 3144â3151 (2021).
Cui, Q., Zhu, Y., Liang, J., Cui, P. & Yang, H. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B 103, 085421 (2021).
Guo, S.-D. et al. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B 107, 054414 (2023).
Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).
Mashtalir, O. et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334â14338 (2014).
Ross, S. & Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889â892 (1955).
Khorram, H. G., Sheikhaei, S., Touski, S. B. & Kokabi, A. Field-effect transistor based on MoSi2N4 monolayer for digital logic applications. IEEE Trans. Electron. Devices 71, 7131â7137 (2024).
Huang, J., Li, P., Ren, X. & Guo, Z.-X. Promising properties of a sub-5-nm monolayer MoSi2N4 transistor. Phys. Rev. Appl. 16, 044022 (2021).
Sun, X. et al. Performance limit of monolayer MoSi2N4 transistors. J. Mater. Chem. C 9, 14683â14698 (2021).
Li, Y. et al. Monolayer WSi2N4: a promising channel material for sub-5-nm-gate homogeneous CMOS devices. Phys. Rev. Appl. 20, 064044 (2023).
Liu, X. & Mao, Y. p-Type high-performance WSi2N4 MOSFETs with the ultrashort scale of sub-5 nm. ACS Appl. Electron. Mater. 5, 6716â6724 (2023).
Zhao, H. Q. et al. Quantum transport of sub-10 nm monolayer WGe2N4 transistors. ACS Appl. Electron. Mater. 3, 5086â5094 (2021).
Dong, M.-M., He, H., Wang, C.-K. & Fu, X.-X. Two-dimensional MoSi2As4-based field-effect transistors integrating switching and gas-sensing functions. Nanoscale 15, 9106â9115 (2023).
Nandan, K., Bhowmick, S., Chauhan, Y. S. & Agarwal, A. Designing power-efficient transistors using narrow-bandwidth materials from the MA2Z4 (M=Mo, Cr, Zr, Ti, Hf; A=Si, Ge; Z=N, P, As) monolayer series. Phys. Rev. Appl. 19, 064058 (2023).
Hasani, N., Shalchian, M., Rajabi-Maram, A. & Touski, S. B. Electrical properties of double-gate field-effect transistor based on MA2N4 (M = Ti, Zr, and Hf; A = Si, Ge, and Sn) monolayers. IEEE Trans. Electron. Devices 70, 5415â5420 (2023).
Liu, H. et al. Giant tunnel magnetoresistance in two-dimensional van der Waals magnetic tunnel junctions: Ag/CrI3/MoSi2N4/CrI3/Ag. Phys. Rev. B 106, 104429 (2022).
Zhan, G., Yang, Z., Luo, K., Zhang, S. & Wu, Z. Large magnetoresistance and perfect spin-injection efficiency in two-dimensional strained VSi2N4-based room-temperature magnetic-tunnel-junction devices. Phys. Rev. Appl. 19, 014020 (2023).
Wu, Q. & Ang, L. K. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett. 120, 022401 (2022).
Tho, C. C. et al. MA2Z4 family heterostructures: promises and prospects. Appl. Phys. Rev. 10, 041307 (2023).
Guo, Y. et al. Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells. J. Phys. Chem. C 126, 4677â4683 (2022).
Liu, Y., Jiang, Z., Jia, J., Robertson, J. & Guo, Y. 2D WSe2/MoSi2N4 type-II heterojunction with improved carrier separation and recombination for photocatalytic water splitting. Appl. Surf. Sci. 611, 155674 (2023).
Tho, C. C. et al. Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: an exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 10, 202201856 (2023).
Zhang, Q.-K. et al. 2D Janus MoSSe/MoGeSiN4 vdW heterostructures for photovoltaic and photocatalysis applications. J. Alloys Compd. 938, 168708 (2023).
Liu, Y., Ji, Y. & Li, Y. Multilevel theoretical screening of novel two-dimensional MA2Z4 family for hydrogen evolution. J. Phys. Chem. Lett. 12, 9149â9154 (2021).
Xiao, C. et al. Enhancing the hydrogen evolution reaction by non-precious transition metal (non-metal) atom doping in defective MoSi2N4 monolayer. Appl. Surf. Sci. 563, 150388 (2021).
Zang, Y. et al. Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo,W): a theoretical prediction. Phys. Rev. Mater. 5, 045801 (2021).
Wang, Y. et al. Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: a computational study. Nanotechnology 34, 245705 (2023).
Chen, Y., Tian, S. & Tang, Q. First-principles studies on electrocatalytic activity of novel two-dimensional MA2Z4 monolayers toward oxygen reduction reaction. J. Phys. Chem. C 125, 22581â22590 (2021).
Lu, S., Zhang, Y., Lou, F., Guo, K. & Yu, Z. Non-precious metal activated MoSi2N4 monolayers for high-performance OER and ORR electrocatalysts: a first-principles study. Appl. Surf. Sci. 579, 152234 (2022).
Yuan, Y. et al. Single rhodium atom embedded two dimensional MoSi2N4: a promising electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 653, 159361 (2024).
Qian, W., Chen, Z., Zhang, J. & Yin, L. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: a DFT prediction. J. Mater. Sci. Technol. 99, 215â222 (2022).
Jia, B. et al. Defect engineering in the MA2Z4 monolayer family for enhancing the hydrogen evolution reaction: first-principles calculations. Sustain. Energy Fuels 7, 164â171 (2023).
Huan, Y., Zhu, L., Li, N. & Zhang, Y. Controllable syntheses and potential applications of two-dimensional metallic transition metal dichalcogenides. Chin. Sci. Bull. 66, 34â52 (2021).
Rehman, S. U. et al. Novel two-dimensional MC2N4 (M = Cr, Mo, W) monolayers for overall water splitting with high visible-light absorption. Sol. Energy 241, 416â427 (2022).
Chen, J. & Tang, Q. The versatile electronic, magnetic and photo-electro catalytic activity of a new 2D MA2Z4 family. Chem. Eur. J. 27, 9925â9933 (2021).
Liu, M.-Y., He, Y., Li, X. & Xiong, K. Tuning of the electronic and photocatalytic properties of Janus WSiGeZ4 (Z = N, P, and As) monolayers via strain engineering. Phys. Chem. Chem. Phys. 25, 7278â7288 (2023).
Li, X.-H., Zhang, H., Zhang, R.-Z. & Cui, H.-L. Computational investigation on 2D Janus MSiGeN4 with structural, electronic properties, quantum capacitance, and photocatalytic activity. Colloids Surf. A 689, 133712 (2024).
Liu, Y. et al. Internal electric fields in asymmetric single-layer lattices for enhancing photocatalytic solar-to-hydrogen efficiency. J. Mater. Chem. A 11, 21713â21720 (2023).
Zeng, J. et al. Boosting the photocatalytic hydrogen evolution performance of monolayer C2N coupled with MoSi2N4: density-functional theory calculations. Phys. Chem. Chem. Phys. 23, 8318â8325 (2021).
He, Y. et al. High hydrogen production in the InSe/MoSi2N4 van der Waals heterostructure for overall water splitting. Phys. Chem. Chem. Phys. 24, 2110â2117 (2022).
Li, R.-X. et al. MoSi2N4/CrS2 van der Waals heterostructure with high solar-to-hydrogen efficiency. Phys. E 144, 115443 (2022).
Shi, L. et al. Two-dimensional type-II MSi2N4/InS (M = Mo, W) heterostructures for photocatalysis. Appl. Phys. Lett. 123, 131102 (2023).
Yang, Y. et al. Two-dimensional Janus SnS/MoSi2N4 structure for high-efficiency photocatalytic splitting. Comput. Mater. Sci. 234, 112781 (2024).
Chen, X. et al. A direct Z-scheme MoSi2N4/BlueP vdW heterostructure for photocatalytic overall water splitting. J. Phys. D Appl. Phys. 55, 215502 (2022).
Huang, X. et al. High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction. J. Mater. Sci. 57, 16404â16417 (2022).
Jalil, A., Zhao, T., Kanwal, A. & Ahmed, I. Prediction of direct Z-scheme H and HÌ-phase of MoSi2N4/MoSX (X = S, Se) van der Waals heterostructures: a promising candidate for photocatalysis. Chem. Eng. J. 470, 144239 (2023).
Xu, L. et al. Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures. Int. J. Hydrog. Energy 48, 18301â18314 (2023).
Tian, M., Wei, C., Zhang, J. & Wang, Z. Electronic properties and storage capability of two-dimensional nitridosilicate MnSi2N4 from first-principles. AIP Adv. 12, 115127 (2022).
Wang, Z. et al. Heavy 2D VSi2N4: high capacity and full battery open-circuit voltage as Li/Na-ion batteries anode. Appl. Surf. Sci. 593, 153354 (2022).
Yuan, S. et al. Two-dimensional VSi2P4 as an anode material for Li-ion batteries. Mater. Chem. Phys. 287, 126323 (2022).
Gao, S. et al. Two-dimensional van der Waals layered VSi2N4 as anode materials for alkali metal (Li, Na and K) ion batteries. J. Phys. Chem. Solids 178, 111339 (2023).
Liu, Y., Ji, Y., Ding, Y.-M., Li, Y. & Lee, S.-T. Theoretical prediction of novel two-dimensional MA2Z4 family for Li/Na battery anodes. 2D Mater. 10, 025020 (2023).
Peng, J. & Wang, Z. Y. Monolayer TiSi2P4 as a high-performance anode for Na-ion batteries. J. Phys. Condens. Matter 35, 455702 (2023).
Ahmad, S., Din, H. U., Nguyen, C. Q., Nguyen, S.-T. & Nguyen, C. Alkali to alkaline earth metals: a DFT study of monolayer TiSi2N4 for metal ion batteries. Dalton Trans. 53, 3785â3796 (2024).
Dai, Z., Zhang, M., Bai, L., Wang, J. & Niu, L. A first-principles study of TiA2P4 (A = Si and Ge) monolayers as excellent electrode materials for Na-ion batteries. Comput. Mater. Sci. 233, 112728 (2024).
Du, B. et al. Theoretical prediction of two-dimensional CrSi2N4 as a potential anode material for Na-ion batteries. J. Phys. D Appl. Phys. 57, 235501 (2024).
Wei, F. et al. First-principles computational study of Janus van der Waals layered VSiGeN4 as anode material for Li-ion battery. Colloids Surf. A 681, 132777 (2024).
Mukherjee, S., Kavalsky, L. & Singh, C. V. Ultrahigh storage and fast diffusion of Na and K in blue phosphorene anodes. ACS Appl. Mater. Interfaces 10, 8630â8639 (2018).
Ye, X.-J., Li, T.-K., He, J.-J., Wang, X.-F. & Liu, C.-S. Magnesene: a theoretical prediction of a metallic, fast, high-capacity, and reversible anode material for sodium-ion batteries. Nanoscale 14, 6118â6125 (2022).
Lv, X. et al. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys. Chem. Chem. Phys. 22, 8902â8912 (2020).
Huang, H., Wu, H.-H., Chi, C., Huang, B. & Zhang, T.-Y. Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J. Mater. Chem. A 7, 8897â8904 (2019).
Cheng, L.-R., Lin, Z.-Z., Li, X.-M. & Chen, X. 2D MoSi2N4 as electrode material of Li-air battery â a DFT study. J. Nanopart. Res. 25, 55 (2023).
Li, X.-M., Lin, Z.-Z., Cheng, L.-R. & Chen, X. Layered MoSi2N4 as electrode material of Zn-Air battery. Phys. Status Solidi RRL 16, 2200007 (2022).
Wang, Y. P., Li, Z. S., Cao, X. R., Wu, S. Q. & Zhu, Z. Z. Monolayer MSi2P4 (M = V, Nb, and Ta) as highly efficient sulfur host materials for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 14, 27833â27841 (2022).
Du, J., Zhou, X., Cheng, X. & Jiang, G. Theoretical evaluation of monolayer MA2Z4 (M = Ti, Zr, or Hf; A = Si or Ge; and Z = P or As) family as promising candidates for lithium-sulfur batteries. J. Colloid Interface Sci. 678, 150â158 (2025).
Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074â1080 (2017).
Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91â95 (2019).
Zhang, Z. et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258â1264 (2022).
Qi, J. et al. Stacking-controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%. Adv. Mater. 36, 2303122 (2024).
Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99â104 (2024).
Wang, D. et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small 15, 1804404 (2019).
Zhang, X. et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm 17, 4026â4032 (2015).
Zhou, J. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 22, 450â458 (2023).
Chen, P. et al. Tailoring the magnetic exchange interaction in MnBi2Te4 superlattices via the intercalation of ferromagnetic layers. Nat. Electron. 6, 18â27 (2023).
Chen, W. et al. Millisecond conversion of metastable 2D materials by flash Joule heating. ACS Nano 15, 1282â1290 (2021).
Ding, H. et al. Progress in structural tailoring and properties of ternary layered ceramics. J. Inorg. Mater. 38, 845â884 (2023).
Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130â1135 (2023).
Du, Z. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492â496 (2020).
Jin, W. et al. Two-dimensional MoSi2N4 family: progress and perspectives form theory. J. Phys. Chem. Lett. 15, 10284â10294 (2024).
Al-Maeeni, A., Lazarev, M., Kazeev, N., Novoselov, K. S. & Ustyuzhanin, A. Review on automated 2D material design. 2D Mater. 11, 032002 (2024).
Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624â632 (2025).
Burger, B. et al. A mobile robotic chemist. Nature 583, 237â241 (2020).
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86â91 (2023).
Zhu, Q. et al. Automated synthesis of oxygen-producing catalysts from Martian meteorites by a robotic AI chemist. Nat. Synth. 3, 319â328 (2023).
Acknowledgements
W.R. thanks H. M. Cheng, the numerous graduate students and post-doctoral fellows, and collaborators at Institute of Metal Research, CAS, and elsewhere, who helped in the exploration of MoSi2N4 materials family. The authors thanks Z. B. Liu for valuable discussions on materials structure. Research on MoSi2N4 materials family was supported by the National Natural Science Foundation of China (numbers 52188101, 51325205, 51290273, 52122202 and 52402064), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (number ZDBS-LY-JSC027), the LiaoNing Revitalization Talents Program (numbers XLYC2201003 and XLYC2403170), the China Postdoctoral Science Foundation (2023M743577), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (GZC20232751).
Author information
Authors and Affiliations
Contributions
W.R. conceived the manuscript, wrote the manuscript with T.Z., and revised and finalized the manuscript. C.X. discussed and helped with the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Yee Sin Ang, Daniela Gogova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, T., Xu, C. & Ren, W. The van der Waals MoSi2N4 materials family. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00832-z
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-025-00832-z


