Skip to main content
Log in

First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties

  • Research Article
  • Published:
Frontiers of Physics

Abstract

As the homologous compounds of MoSi2N4, the MoSi2N4(MoN)n monolayers have been synthesized in a recent experiment. These systems consist of homogeneous metal nitride multilayers sandwiched between two SiN surfaces, which extends the septuple-atomic-layer MSi2N4 system to ultra-thick MSi2N4(MN)n forms. In this paper, we perform a first-principles study on the MoSi2N4(FeN) monolayer, which is constructed by iron molybdenum nitride intercalated into the SiN layers. As a cousin of MoSi2N4(MoN), this double transition-metal system exhibits robust structural stability from the energetic, mechanical, dynamical and thermal perspectives. Different from the MoSi2N4(MoN) one, the MoSi2N4(FeN) monolayer possesses intrinsic ferromagnetism and presents a bipolar magnetic semiconducting behaviour. The ferromagnetism can be further enhanced by the surface hydrogenation, which raises the Curie temperature to 310 K around room temperature. More interestingly, the hydrogenated MoSi2N4(FeN) monolayer exhibits a quantum anomalous Hall (QAH) insulating behaviour with a sizeable nontrivial band gap of 0.23 eV. The nontrivial topological character can be well described by a two-band k · p model, confirming a non-zero Chern number of C = 1. Similar bipolar magnetic semiconducting feature and hydrogenation-induced QAH state are also present in the WSi2N4(FeN) monolayer. Our study demonstrates that the double transition-metal MSi2N4(M′N) system will be a fertile platform to achieve fascinating spintronic and topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng, and W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)

    Article  ADS  Google Scholar 

  2. Y. Yin, Q. Gong, M. Yi, and W. Guo, Emerging versatile two-dimensional MoSi2N4 family, Adv. Funct. Mater. 33(26), 2214050 (2023)

    Article  Google Scholar 

  3. C. C. Tho, S. D. Guo, S. J. Liang, W. L. Ong, C. S. Lau, L. Cao, G. Wang, and Y. S. Ang, MA2Z4 family heterostructures: Promises and prospects, Appl. Phys. Rev. 10(4), 041307 (2023)

    Article  ADS  Google Scholar 

  4. D. Huang, F. Liang, R. Guo, D. Lu, J. Wang, H. Yu, and H. Zhang, MoSi2N4: A 2D regime with strong exciton–phonon coupling, Adv. Opt. Mater. 10(9), 2102612 (2022)

    Article  Google Scholar 

  5. K. S. Novoselov, Discovery of 2D van der Waals layered MoSi2N4 family, Natl. Sci. Rev. 7(12), 1842 (2020)

    Article  Google Scholar 

  6. B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, and X. Zhuang, Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles, Nano Energy 82, 105716 (2021)

    Article  Google Scholar 

  7. S. Li, W. Wu, X. Feng, S. Guan, W. Feng, Y. Yao, and S. A. Yang, Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4, Phys. Rev. B 102(23), 235435 (2020)

    Article  ADS  Google Scholar 

  8. C. Yang, Z. Song, X. Sun, and J. Lu, Valley pseudospin in monolayer MoSi2N4 and MoSi2As4, Phys. Rev. B 103(3), 035308 (2021)

    Article  ADS  Google Scholar 

  9. Y. Wu, Z. Tang, W. Xia, W. Gao, F. Jia, Y. Zhang, W. Zhu, W. Zhang, and P. Zhang, Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4, npj Comput. Mater. 8(1), 129 (2022)

    Article  ADS  Google Scholar 

  10. J. Yu, J. Zhou, X. Wan, and Q. Li, High intrinsic lattice thermal conductivity in monolayer MoSi2N4, New J. Phys. 23(3), 033005 (2021)

    Article  ADS  Google Scholar 

  11. X. Wang, W. Ju, D. Wang, X. Li, and J. Wan, Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization, Phys. Chem. Chem. Phys. 25(27), 18247 (2023)

    Article  Google Scholar 

  12. A. Priydarshi, Y. S. Chauhan, S. Bhowmick, and A. Agarwal, Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P), Nanoscale 14(33), 11988 (2022)

    Article  Google Scholar 

  13. L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, Y. Li, and X. Q. Chen, Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties, Nat. Commun. 12(1), 2361 (2021)

    Article  ADS  Google Scholar 

  14. Y. Ding and Y. Wang, Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = Y–Cd and Hf–Hg) nanosheets and their versatile electronic and magnetic properties, J. Phys. Chem. C 125(35), 19580 (2021)

    Article  Google Scholar 

  15. Y. T. Ren, L. Hu, Y. T. Chen, Y. J. Hu, J. L. Wang, P. L. Gong, H. Zhang, L. Huang, and X. Q. Shi, Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments, Phys. Rev. Mater. 6(6), 064006 (2022)

    Article  Google Scholar 

  16. Y. Wang, D. Legut, X. Liu, Y. Li, C. Li, Y. Sun, R. Zhang, and Q. Zhang, Mott transition and superexchange mechanism in magnetically doped XSi2N4 caused by large 3d orbital onsite coulomb interaction, Phys. Rev. B 106(10), 104421 (2022)

    Article  ADS  Google Scholar 

  17. Z. An, L. Lv, Y. Su, Y. Jiang, and Z. Guan, Carrier doping modulates the magnetoelectronic and magnetic anisotropic properties of two-dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers, Phys. Chem. Chem. Phys. 26(5), 4208 (2024)

    Article  Google Scholar 

  18. Q. Cui, Y. Zhu, J. Liang, P. Cui, and H. Yang, Spinvalley coupling in a two-dimensional VSi2N4 monolayer, Phys. Rev. B 103(8), 085421 (2021)

    Article  ADS  Google Scholar 

  19. S. Li, Q. Wang, C. Zhang, P. Guo, and S. A. Yang, Correlation-driven topological and valley states in monolayer VSi2P4, Phys. Rev. B 104(8), 085149 (2021)

    Article  ADS  Google Scholar 

  20. Y. Wang and Y. Ding, Switchable valley polarization and quantum anomalous Hall state in the VN2X2Y2 nanosheets (X = group-III and Y = group-VI elements), Appl. Phys. Lett. 119(19), 193101 (2021)

    Article  ADS  Google Scholar 

  21. P. Liu, S. Liu, M. Jia, H. Yin, G. Zhang, F. Ren, B. Wang, and C. Liu, Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer, Appl. Phys. Lett. 121(6), 063103 (2022)

    Article  ADS  Google Scholar 

  22. P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)

    Article  Google Scholar 

  23. K. Jia, X. J. Dong, S. S. Li, W. X. Ji, and C. W. Zhang, Strain-engineering induced topological phase transitions and multiple valley states in Janus monolayer VCSiN4, J. Mater. Chem. C 11(30), 10359 (2023)

    Article  Google Scholar 

  24. Z. Gao, Y. He, and K. Xiong, Two-dimensional Janus SVAN2 (A = Si, Ge) monolayers with intrinsic semiconductor character and room temperature ferromagnetism: Tunable electronic properties via strain and an electric field, Dalton Trans. 52(46), 17416 (2023)

    Article  Google Scholar 

  25. X. Zhou, R. W. Zhang, Z. Zhang, W. Feng, Y. Mokrousov, and Y. Yao, Sign-reversible valley-dependent berry phase effects in 2D valley-half-semiconductors, npj Comput. Mater. 7(1), 160 (2021)

    Article  ADS  Google Scholar 

  26. C. Z. Chang, C. X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)

    Article  ADS  Google Scholar 

  27. K. Wang, Y. Li, H. Mei, P. Li, and Z. X. Guo, Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)

    Article  Google Scholar 

  28. P. Li, Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)

    Article  Google Scholar 

  29. H. P. Wang, W. Luo, and H. J. Xiang, Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)

    Article  ADS  Google Scholar 

  30. P. Li, X. Li, W. Zhao, H. Chen, M. X. Chen, Z. X. Guo, J. Feng, X. G. Gong, and A. H. MacDonald, Topological Dirac states beyond π-orbitals for silicene on SiC(0001) surface, Nano Lett. 17(10), 6195 (2017)

    Article  ADS  Google Scholar 

  31. Y. Ding and Y. Wang, Two-dimensional T′ MA2N4 (M = Mo/W, A = Si/Ge) nanosheets: First-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction, Appl. Surf. Sci. 627, 157256 (2023)

    Article  Google Scholar 

  32. R. Islam, R. Verma, B. Ghosh, Z. Muhammad, A. Bansil, C. Autieri, and B. Singh, Switchable large-gap quantum spin Hall state in the two-dimensional MSi2Z4 class of materials, Phys. Rev. B 106(24), 245149 (2022)

    Article  ADS  Google Scholar 

  33. R. Islam, G. Hussain, R. Verma, M. S. Talezadehlari, Z. Muhammad, B. Singh, and C. Autieri, Fast electrically switchable large gap quantum spin Hall states in MGe2Z4, Adv. Electron. Mater. 9(8), 2300156 (2023)

    Article  Google Scholar 

  34. X. Wei, B. Zhao, J. Zhang, Y. Xue, Y. Li, and Z. Yang, Chern insulators without band inversion in MoS2 monolayers with 3d adatoms, Phys. Rev. B 95(7), 075419 (2017)

    Article  ADS  Google Scholar 

  35. X. Deng, H. Yang, S. Qi, X. Xu, and Z. Qiao, Quantum anomalous Hall effect and giant Rashba spin–orbit splitting in graphene system Co-doped with boron and 5d transition-metal atoms, Front. Phys. 13(5), 137308 (2018)

    Article  ADS  Google Scholar 

  36. M. A. Abdelati, A. A. Maarouf, and M. M. Fadlallah, Substitutional transition metal doping in MoSi2N4 monolayer: Structural, electronic and magnetic properties, Phys. Chem. Chem. Phys. 24(5), 3035 (2022)

    Article  Google Scholar 

  37. Y. Wang, G. Wang, M. Huang, Z. Luo, J. Wang, Z. Ding, X. Guo, and X. Liu, Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: A computational study, Nanotechnology 34(24), 245705 (2023)

    Article  ADS  Google Scholar 

  38. Z. Liu, L. Wang, Y. L. Hong, X. Q. Chen, H. M. Cheng, and W. Ren, Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds, Natl. Sci. Rev. 10(4), nwac273 (2023)

    Article  Google Scholar 

  39. Y. Wang and Y. Ding, Large-gap quantum spin hall state in double-transition-metal homologous compounds of WSi2N4: A first-principles study, Phys. Status Solidi Rapid Res. Lett. 18(3), 2300376 (2024)

    Article  ADS  Google Scholar 

  40. A. Miura, K. Tadanaga, E. Magome, C. Moriyoshi, Y. Kuroiwa, T. Takahiro, and N. Kumada, Octahedral and trigonal-prismatic coordination preferences in Nb-, Mo-, Ta-, and W-based ABX2 layered oxides, oxynitrides, and nitrides, J. Solid State Chem. 229, 272 (2015)

    Article  ADS  Google Scholar 

  41. E. Enriquez, Y. Zhang, A. Chen, Z. Bi, Y. Wang, E. Fu, Z. Harrell, X. Lu, P. Dowden, H. Wang, C. Chen, and Q. Jia, Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition, Appl. Phys. Lett. 109(8), 081907 (2016)

    Article  ADS  Google Scholar 

  42. G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  43. G. C. Moore, M. K. Horton, E. Linscott, A. M. Ganose, M. Siron, D. D. O’Regan, and K. A. Persson, High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism, Phys. Rev. Mater. 8(1), 014409 (2024)

    Article  Google Scholar 

  44. R. Panda and N. Gajbhiye, Chemical synthesis and magnetic properties of nanocrystalline FeMoN2, J. Cryst. Growth 191(1–2), 92 (1998)

    Article  ADS  Google Scholar 

  45. A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)

    Article  ADS  Google Scholar 

  46. F. Mouhat and F. M. C. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)

    Article  ADS  Google Scholar 

  47. X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)

    Article  Google Scholar 

  48. C. C. Tho, X. Feng, L. Cao, G. Wang, S. J. Liang, C. S. Lau, S. D. Guo, and Y. S. Ang, Ultrathick MA2N4(M′N) intercalated monolayers with sublayer-protected Fermi surface conduction states: Interconnect and metal contact applications, Adv. Phys. Res. 2300156, 2300156 (2024)

    Article  Google Scholar 

  49. J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,m(II)]MnO3, Phys. Rev. 100(2), 564 (1955)

    Article  ADS  Google Scholar 

  50. Y. Wang, X. Xu, W. Ji, S. Li, Y. Li, and X. Zhao, Exploitable magnetic anisotropy and half-metallicity controls in multiferroic van der Waals heterostructure, npj Comput. Mater. 9(1), 223 (2023)

    Article  ADS  Google Scholar 

  51. C. Liu, G. Zhao, T. Hu, Y. Chen, S. Cao, L. Bellaiche, and W. Ren, Ferromagnetism, Jahn–Teller effect, and orbital order in the two-dimensional monolayer perovskite Rb2CuCl4, Phys. Rev. B 104, L241105 (2021)

    ADS  Google Scholar 

  52. M. R. K. Akanda and R. K. Lake, Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers, Appl. Phys. Lett. 119(5), 052402 (2021)

    Article  ADS  Google Scholar 

  53. T. M. Henderson, J. Paier, and G. E. Scuseria, Accurate treatment of solids with the HSE screened hybrid, Phys. Status Solidi B 248(4), 767 (2011)

    Article  ADS  Google Scholar 

  54. J. Li, X. Li, and J. Yang, A review of bipolar magnetic semiconductors from theoretical aspects, Fund. Res. 2(4), 511 (2022)

    Google Scholar 

  55. T. A. Manz and N. G. Limas, Introducing ddec6 atomic population analysis. Part 1. Charge partitioning theory and methodology, RSC Adv. 6(53), 47771 (2016)

    Article  ADS  Google Scholar 

  56. A. S. Botana and M. R. Norman, Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer, Phys. Rev. Mater. 3(4), 044001 (2019)

    Article  Google Scholar 

  57. T. Barnowsky, S. Curtarolo, A. V. Krasheninnikov, T. Heine, and R. Friedrich, Magnetic state control of nonvan der Waals 2D materials by hydrogenation, Nano Lett. 24(13), 3874 (2024)

    Article  ADS  Google Scholar 

  58. K. Wang, K. Ren, Y. Hou, Y. Cheng, and G. Zhang, Physical insights into enhancing magnetic stability of 2D magnets, J. Appl. Phys. 133(11), 110902 (2023)

    Article  ADS  Google Scholar 

  59. Y. Wang and Y. Ding, Tunable structural phases and electronic properties of group V MSi2N4 (M = V, Nb, Ta) nanosheets via surface hydrogenation: A first-principles study, J. Mater. Chem. C 11(48), 17034 (2023)

    Article  Google Scholar 

  60. Y. Wu, L. Deng, J. Tong, X. Yin, F. Tian, G. Qin, and X. Zhang, Ferrovalley and topological phase transition behavior in monolayer Ru(OH)2, J. Mater. Chem. C 11(40), 13714 (2023)

    Article  Google Scholar 

  61. X. Zhang, Q. Lu, W. Liu, W. Niu, J. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. He, J. Du, L. He, R. Zhang, G. Bian, and Y. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12(1), 2492 (2021)

    Article  ADS  Google Scholar 

  62. H. R. Fuh, C. R. Chang, Y. K. Wang, R. F. L. Evans, R. W. Chantrell, and H. T. Jeng, New type single-layer magnetic semiconductor in transition-metal dichalco-genides VX2 (X = S, Se and Te), Sci. Rep. 6(1), 32625 (2016)

    Article  ADS  Google Scholar 

  63. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)

    Article  ADS  Google Scholar 

  64. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)

    Article  ADS  Google Scholar 

  65. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)

    Article  ADS  Google Scholar 

  66. J. Gong, G. Ding, C. Xie, W. Wang, Y. Liu, G. Zhang, and X. Wang, Genuine Dirac half-metals in two-dimensions, Adv. Sci. 11, 2307297 (2024)

    Article  Google Scholar 

  67. X. Wang, X. P. Li, J. Li, C. Xie, J. Wang, H. Yuan, W. Wang, Z. Cheng, Z. M. Yu, and G. Zhang, Magnetic second-order topological insulator: An experimentally feasible 2D CrSiTe3, Adv. Funct. Mater. 33(49), 2304499 (2023)

    Article  Google Scholar 

  68. Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. S. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)

    Article  ADS  Google Scholar 

  69. Y. Yao and Z. Fang, Sign changes of intrinsic spin Hall effect in semiconductors and simple metals: First-principles calculations, Phys. Rev. Lett. 95(15), 156601 (2005)

    Article  ADS  Google Scholar 

  70. S. J. Zhang, C. W. Zhang, S. F. Zhang, W. X. Ji, P. Li, P. J. Wang, S. S. Li, and S. S. Yan, Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)

    Article  ADS  Google Scholar 

  71. X. Zhu, Y. Chen, Z. Liu, Y. Han, and Z. Qiao, Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. 18(2), 23302 (2023)

    Article  ADS  Google Scholar 

  72. X. Kong, L. Li, L. Liang, F. M. Peeters, and X. J. Liu, The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers, Appl. Phys. Lett. 116(19), 192404 (2020)

    Article  ADS  Google Scholar 

  73. H. Sun, S. S. Li, W. X. Ji, and C. W. Zhang, Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)

    Article  ADS  Google Scholar 

  74. Q. F. Liang, R. Yu, J. Zhou, and X. Hu, Topological states of non-Dirac electrons on a triangular lattice, Phys. Rev. B 93(3), 035135 (2016)

    Article  ADS  Google Scholar 

  75. C. Si, K. H. Jin, J. Zhou, Z. Sun, and F. Liu, Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice, Nano Lett. 16(10), 6584 (2016)

    Article  ADS  Google Scholar 

  76. Z. Zhang, L. Zhao, and J. Shi, Mechanics and strategies for wrinkling suppression: A review, Front. Mech. Eng. 8, 910415 (2022)

    Article  Google Scholar 

  77. S. Yang, Y. Chen, and C. Jiang, Strain engineering of two-dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)

    Article  Google Scholar 

  78. J. Wang, L. He, Y. Zhang, H. Nong, S. Li, Q. Wu, J. Tan, and B. Liu, Locally strained 2D materials: Preparation, properties, and applications, Adv. Mater. 36(23), 2314145 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (No. 11774312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Ding or Yanli Wang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary material

11467_2024_1431_MOESM1_ESM.pdf

First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Wang, Y. First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties. Front. Phys. 19, 63207 (2024). https://doi.org/10.1007/s11467-024-1431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1431-6

Keywords