Skip to main content
Log in

sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Van der Waals (vdWs) stacking of two-dimensional (2D) materials can effectively weaken the Fermi level pinning (FLP) effect in metal/semiconductor contacts due to dangling-bond-free surfaces. However, the inherent vdWs gap always induces a considerable tunneling barrier, significantly limiting carrier injection. Herein, by inducing a sp2 to sp3 hybridization transformation in 2D carbon-based metal via surface defect engineering, the large orbital overlap can form an efficient carrier channel, overcoming the tunneling barrier. Specifically, by selecting the 2D carbon-based X3C2 (X = Cd, Hg, and Zn) metal and the 2D MSi2N4 (M = Cr, Hf, Mo, Ti, V, and Zr) semiconductor, we constructed 36 metal/semiconductor contacts. For vdWs contacts, although Ohmic contacts can be formed at the interface, the highest tunneling probability (PTB) is only 3.11%. As expected, the PTB can be significantly improved, as high as 48.73%, when MSi2N4, accompanied by surface nitrogen vacancies, forms an interface covalent bond with X3C2. Simultaneously, weak FLP and Ohmic contact remain at the covalent-bond-based surface, attributing to the protection of the MSi2N4 band-edge electronic states by the outlying Si-N sublayer. Our work provides a promising path for advancing the progress of 2D electronic and photoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popov, I.; Seifert, G.; Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

    Article  PubMed  Google Scholar 

  2. Durán Retamal, J. R.; Periyanagounder, D.; Ke, J. J.; Tsai, M. L.; He, J. H. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem. Sci. 2018, 9, 7727–7745.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiang, B.; Yang, Z. Y.; Liu, X. Q.; Liu, Y.; Liao, L. Interface engineering for two-dimensional semiconductor transistors. Neno Today 2019, 25, 122–134.

    Article  CAS  Google Scholar 

  4. Liu, X. C.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425.

    Article  CAS  Google Scholar 

  5. Yang, Z.; Kim, C.; Lee, K. Y.; Lee, M.; Appalakondaiah, S.; Ra, C. H.; Watanabe, K.; Taniguchi, T.; Cho, K.; Hwang, E. et al. A fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2-metal junction. Adv. Mater. 2019, 31, 1808231.

    Article  Google Scholar 

  6. Chen, R. S.; Ding, G. L.; Feng, Z. H.; Zhang, S. R.; Mo, W. A.; Han, S. T.; Zhou, Y. MoS2 transistor with weak fermi level pinning via MXene contacts. Adv. Funct. Mater. 2022, 32, 2204288.

    Article  CAS  Google Scholar 

  7. Murali, K.; Dandu, M.; Watanabe, K.; Taniguchi, T.; Majumdar, K. Accurate extraction of schottky barrier height and universality of fermi level de-pinning of van der waals contacts. Adv. Funct. Mater. 2021, 31, 2010513.

    Article  CAS  Google Scholar 

  8. Kim, G. S.; Kim, S. H.; Park, J.; Han, K. H.; Kim, J.; Yu, H. Y. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano 2018, 12, 6292–6300.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X. L.; Hu, Y. Q.; Kim, S. Y.; Addou, R.; Cho, K.; Wallace, R. M. Origins of fermi level pinning for Ni and Ag metal contacts on tungsten dichalcogenides. ACS Nano 2023, 17, 20353–20365.

    Article  CAS  PubMed  Google Scholar 

  10. Wu, Z. L.; Zhu, Y. H.; Wang, F.; Ding, C. Y.; Wang, Y. R.; Zhan, X. Y.; He, J.; Wang, Z. X. Lowering contact resistances of two-dimensional semiconductors by memristive forming. Nano Lett. 2022, 22, 7094–7103.

    Article  CAS  PubMed  Google Scholar 

  11. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.

    Article  Google Scholar 

  12. Sotthewes, K.; van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H. J. W.; Bampoulis, P. Universal fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 2019, 123, 5411–5420.

    Article  CAS  Google Scholar 

  13. Kobayashi, M.; Kinoshita, A.; Saraswat, K.; Wong, H. S. P.; Nishi, Y. Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J. Appl. Phys. 2009, 105, 023702.

    Article  Google Scholar 

  14. Lee, S. Y.; Yun, W. S.; Lee, J. D. New method to determine the schottky barrier in few-layer black phosphorus metal contacts. ACS Appl. Mater. Interfaces 2017, 9, 7873–7877.

    Article  CAS  PubMed  Google Scholar 

  15. Tung, R. T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.

    Article  CAS  PubMed  Google Scholar 

  16. Cowley, A. M.; Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220.

    Article  CAS  Google Scholar 

  17. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

    Article  CAS  Google Scholar 

  20. Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

    CAS  Google Scholar 

  21. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  22. Ai, W.; Shi, Y. F.; Hu, X. H.; Yang, J.; Sun, L. T. Tunable Schottky barrier and efficient Ohmic contacts in MSi2N4 (M = Mo, W)/2D metal contacts. ACS Appl. Electron. Mater. 2023, 5, 5606–5613.

    Article  CAS  Google Scholar 

  23. Zhang, X.; Zheng, J. Y.; Xiang, Y. C.; Wu, D.; Fan, J.; Sun, Y. Y.; Chen, L. J.; Gan, L. Y.; Zhou, X. Y. Ohmic contacts in MXene/MoSi2N4 heterojunctions. Appl. Phys. Lett. 2023, 123, 023505.

    Article  CAS  Google Scholar 

  24. Li, Z. H.; Han, J. N.; Cao, S. G.; Zhang, Z. H. Graphene/MoSi2X4: A class of van der Waals heterojunctions with unique mechanical and optical properties and controllable electrical contacts. Appl. Surf. Sci. 2023, 614, 156095.

    Article  CAS  Google Scholar 

  25. Tho, C. C.; Yu, C. J.; Tang, Q.; Wang, Q. Q.; Su, T.; Feng, Z. E.; Wu, Q. Y.; Nguyen, C. V.; Ong, W. L.; Liang, S. J. et al. Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: An exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 2023, 10, 2201856.

    Article  CAS  Google Scholar 

  26. Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 269, 670–674.

    Article  Google Scholar 

  27. Wang, L.; Shi, Y. P.; Liu, M. F.; Zhang, A.; Hong, Y. L.; Li, R. H.; Gao, Q.; Chen, M. X.; Ren, W. C.; Cheng, H. M. et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 2021, 12, 2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Z. B.; Wang, L.; Hong, Y. L.; Chen, X. Q.; Cheng, H. M.; Ren, W. C. Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds. Natl. Sci. Rev. 2023, 10, nwac273.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, B. Dual single-site catalyst promoter boosts catalytic performance. Natl. Sci. Rev. 2020, 7, 1841–1842.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. B.; Zhang, T.; Dou, K. Y.; Du, W. H.; Peng, R.; Dai, Y.; Huang, B. B.; Ma, Y. D. Valley-contrasting physics in single-layer CrSi2N4 and CrSi2P4. J. Phys. Chem. Lett. 2021, 12, 8341–8346.

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, C. V.; Nguyen, C. Q.; Nguyen, S. T.; Ang, Y. S.; Hieu, N. V. Two-dimensional metal/semiconductor contact in a janus MoSH/MoSi2N4 van der Waals heterostructure. J. Phys. Chem. Lett. 2022, 12, 2576–2582.

    Article  Google Scholar 

  32. Zhao, J. F.; Zhao, Y. L.; He, H. J.; Zhou, P. W.; Liang, Y.; Frauenheim, T. Stacking engineering: A boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett. 2021, 12, 10190–10196.

    Article  CAS  PubMed  Google Scholar 

  33. Li, S.; Wu, W. K.; Feng, X. L.; Guan, S.; Feng, W. X.; Yao, Y. G.; Yang, S. A. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys. Rev. B 2020, 102, 235435.

    Article  CAS  Google Scholar 

  34. Yuan, J. R.; Wei, Q. Y.; Sun, M. L.; Yan, X. H.; Cai, Y. Q.; Shen, L.; Schwingenschlögl, U. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B 2022, 105, 195151.

    Article  CAS  Google Scholar 

  35. Yin, Y.; Gong, Q. H.; Yi, M.; Guo, W. L. Emerging versatile two-dimensional MoSi2N4 family. Adv. Funct. Mater. 2023, 33, 2214050.

    Article  CAS  Google Scholar 

  36. Wang, Q. Q.; Cao, L. M.; Liang, S. J.; Wu, W. K.; Wang, G. Z.; Lee, C. H.; Ong, W. L.; Yang, H. Y.; Ang, L. K.; Yang, S. A. et al. Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 2021, 5, 71.

    Article  CAS  Google Scholar 

  37. Liu, P. F.; Zhou, L. J.; Frauenheim, T.; Wu, L. M. A graphene-like Mg3N2 monolayer: High stability, desirable direct band gap and promising carrier mobility. Phys. Chem. Chem. Phys. 2016, 18, 30379–30384.

    Article  CAS  PubMed  Google Scholar 

  38. Shao, Y. F.; Wang, Q.; Pan, H.; Shi, X. Q. Van der Waals contact to 2D semiconductors with a switchable electric dipole: Achieving both n- and p-type Ohmic contacts to metals with a wide range of work functions. Adv. Electron. Mater. 2020, 6, 1900981.

    Article  CAS  Google Scholar 

  39. Zhong, K. H.; Li, J. X.; Xu, G. G.; Yang, Y. M.; Zhang, J. M.; Huang, Z. G. Contacts between monolayer black phosphorene and metal electrodes: Ohmic, Schottky, and their regulating strategy. J. Appl. Phys. 2021, 130, 124305.

    Article  CAS  Google Scholar 

  40. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  43. Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

    Article  CAS  Google Scholar 

  44. Waldron, D.; Haney, P.; Larade, B.; MacDonald, A.; Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 2006, 96, 166804.

    Article  PubMed  Google Scholar 

  45. Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

    Article  Google Scholar 

  46. Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device. Phys. Rev. B 2001, 63, 121104.

    Article  Google Scholar 

  47. Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.

    Article  CAS  Google Scholar 

  48. Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

    Article  CAS  Google Scholar 

  49. Zhang, X. K.; Yu, H. H.; Tang, W. H.; Wei, X. F.; Gao, L.; Hong, M. Y.; Liao, Q. L.; Kang, Z.; Zhang, Z.; Zhang, Y. All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater. 2022, 24, 2109521.

    Article  Google Scholar 

  50. Wei, X. R.; Zhang, M. J.; Zhang, X. D.; Lin, Y. M.; Jiang, Z. Y.; Du, A. J. Efficient modulation of Schottky to Ohmic contact in MoSi2N4/M3C2 (M = Zn, Cd, Hg) van der Waals heterostructures. J. Phys. Chem. Lett. 2024, 15, 3871–3883.

    Article  CAS  PubMed  Google Scholar 

  51. Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A. V.; Zhuang, X. Y. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021, 82, 105716.

    Article  CAS  Google Scholar 

  52. Chen, R.; Wang, Y. F.; Qian, G. L.; Liang, Q.; Luo, X. Y.; Xie, Q. Monolayers of germanene/janus Ga2SeTe van der Waals heterostructures by first-principles calculations for high-performance optoelectronic devices. ACS Appl. Nano Mater. 2023, 6, 3453–3462.

    Article  CAS  Google Scholar 

  53. Vu, T. V.; Hieu, N. V.; Phuc, H. V.; Hieu, N. N.; Bui, H. D.; Idrees, M.; Amin, B.; Nguyen, C. V. Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl. Surf. Sci. 2020, 507, 145036.

    Article  CAS  Google Scholar 

  54. Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021, 2, 100298.

    Article  CAS  Google Scholar 

  55. Qu, H. Z.; Guo, S. Y.; Zhou, W. H.; Wu, Z. H.; Cao, J.; Li, Z.; Zeng, H. B.; Zhang, S. L. Enhanced interband tunneling in two-dimensional tunneling transistors through anisotropic energy dispersion. Phys. Rev. B 2022, 105, 075413.

    Article  CAS  Google Scholar 

  56. Wang, Y. Y.; Yang, R. X.; Quhe, R.; Zhong, H. X.; Cong, L.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces. Nanoscale 2016, 8, 1179–1191.

    Article  CAS  PubMed  Google Scholar 

  57. Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.

    Article  CAS  PubMed  Google Scholar 

  58. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation (No. 2022M711691), the National Natural Science Foundation of China (Nos. 12104130 and 12304085), Six talent peaks project in Jiangsu Province (No. XCL-104), the open research fund of Key Laboratory of Quantum Materials and Devices (Southeast University), Ministry of Education (No. 3207022401C3), and Natural Science Foundation of Nanjing University of Posts and Telecommunications (No. NY221102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Wang, Yongtao Li or Xianghong Niu.

Electronic Supplementary Material

12274_2024_6877_MOESM1_ESM.pdf

sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, W., Shi, A., Zhong, Z. et al. sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously. Nano Res. 17, 10227–10234 (2024). https://doi.org/10.1007/s12274-024-6877-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12274-024-6877-x

Keywords