Skip to main content
Log in

The Photocatalytic Performance of JANUS SXSiN2 (X = Cr, Mo, W) Monolayers with Enhanced Carrier Migration

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Efficient catalysts for separating electron–hole pairs are crucial for improving the quantum yield and activity of photocatalysts. This study systematically investigates the properties and performance of monolayers of Janus SXSiN2 (X = Cr, Mo, W) using the first-principles computational methods. The research findings suggest that biaxial strain can induce an indirect-to-direct bandgap transition in Janus SXSiN2 and can also modulate the bandgap and band edge positions. Surface vacancy defects play a critical role in enhancing the charge carrier separation ability of Janus SXSiN2, leading to remarkable photocatalytic performance. Moreover, the synergistic effect of biaxial strain and vacancy defects can significantly improve the catalytic performance for the HER. This study provides a theoretical foundation for further development of efficient two-dimensional Janus photocatalysts.

Graphical Abstract

Biaxial strain can modulate the bandgap and band edge positions. Surface vacancy defects play a critical role in enhancing the charge carrier separation ability. Janus SXSiN2 exhibits excellent photocatalytic performance for the HER reaction due to the synergistic effects of strain and vacancy defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Constantino DS, Dias MM, Silva AM, Faria JL, Silva CG (2022) Intensification strategies for improving the performance of photocatalytic processes: a review[J]. J Clean Prod 340:130800

    Article  CAS  Google Scholar 

  2. Shang F-K, Li Y-H, Qi M-Y et al (2023) Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis[J]. Catal Today 410:85–101

    Article  CAS  Google Scholar 

  3. Niu P, Dai J, Zhi X et al (2021) Photocatalytic overall water splitting by graphitic carbon nitride[J]. InfoMat 3(9):931–961

    Article  CAS  Google Scholar 

  4. Villa K, Galán-Mascarós JR, López N et al (2021) Photocatalytic water splitting: advantages and challenges[J]. Sustain Energy & Fuels, The Royal Soc Chem 5(18):4560–4569

    Article  CAS  Google Scholar 

  5. Xu N, Wang W, Zhu Z, Hu C, Liu B (2022) Recent developments in photocatalytic water treatment technology with MXene material: a review[J]. Chem Eng J Adv 12:100418

    Article  CAS  Google Scholar 

  6. Guo R, Xia C, Bi Z et al (2023) Recent progress of photothermal effect on photocatalytic reduction of CO2[J]. Fuel Process Technol 241:107617

    Article  CAS  Google Scholar 

  7. Li T, Tsubaki N, Jin Z (2024) S-scheme heterojunction in photocatalytic hydrogen production[J]. J Mater Sci Technol 169:82–104

    Article  CAS  Google Scholar 

  8. Zhang K, Hu H, Shi L et al (2021) Strategies for optimizing the photocatalytic water-splitting performance of metal-organic framework-based materials[J]. Small Sci 1(12):2100060

    Article  CAS  Google Scholar 

  9. Wu X, Chen G, Li L et al (2023) ZnIn2S4-based S-scheme heterojunction photocatalyst[J]. J Mater Sci Technol 167:184–204

    Article  CAS  Google Scholar 

  10. He Y, Chen K, Leung MKH et al (2022) Photocatalytic fuel cell – a review[J]. Chem Eng J 428:131074

    Article  CAS  Google Scholar 

  11. Low J, Yu J, Jaroniec M et al (2017) Heterojunction photocatalysts[J]. Adv Mater 29(20):1601694

    Article  Google Scholar 

  12. Zhang L, Zhang J, Yu H et al (2022) Emerging S-scheme photocatalyst[J]. Adv Mater 34(11):2107668

    Article  CAS  Google Scholar 

  13. Liu T, Xiong Y, Wang X et al (2023) Dual cocatalysts and vacancy strategies for enhancing photocatalytic hydrogen production activity of Zn3In2S6 nanosheets with an apparent quantum efficiency of 66.20%[J]. J Coll Interface Sci 640:31–40

    Article  CAS  Google Scholar 

  14. Zhou Z, Yao H, Wu Y et al (2024) Synergistic effect of Cu-graphdiyne/transition bimetallic tungstate formed S-scheme heterojunction for enhanced photocatalytic hydrogen evolution[J]. Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica 40(10):2312010

    Article  Google Scholar 

  15. Liu F, Fan Z (2023) Defect engineering of two-dimensional materials for advanced energy conversion and storage[J]. Chem Soc Rev, The Royal Soc Chem 52(5):1723–1772

    Article  CAS  Google Scholar 

  16. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chem Soc Rev, Royal Soc Chem 48(7):2109–2125

    Article  CAS  Google Scholar 

  17. Guo S, Li X, Li J et al (2021) Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nat Commun, Nat Publ Group 12(1):1343

    Article  CAS  Google Scholar 

  18. Yang C, Li X, Li M et al (2024) Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution[J]. Chin J Catal 56:88–103

    Article  Google Scholar 

  19. Zhang X, Kim D, Yan J et al (2021) Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4[J]. ACS Appl Mater & Interfaces, Am Chem Soc 13(8):9762–9770

    Article  CAS  Google Scholar 

  20. Li J, Zhang M, Guan Z et al (2017) Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2[J]. Appl Catal B 206:300–307

    Article  CAS  Google Scholar 

  21. Ju L, Bie M, Shang J et al (2020) Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting[J]. J Phys Mater, IOP Publ 3(2):022004

    Article  CAS  Google Scholar 

  22. Liu F, He Y, Liu X et al (2022) Regulating excitonic effects in covalent organic frameworks to promote free charge carrier generation[J]. ACS Catal, Am Chem Soc 12(15):9494–9502

    Article  CAS  Google Scholar 

  23. Cheng YC, Zhu ZY, Tahir M et al (2013) Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers[J]. Europhys Lett 102(5):57001

    Article  Google Scholar 

  24. Lu A-Y, Zhu H, Xiao J et al (2017) Janus monolayers of transition metal dichalcogenides[J]. Nat Nanotechnol, Nat Publ Group 12(8):744–749

    Article  CAS  Google Scholar 

  25. Zhang J, Jia S, Kholmanov I et al (2017) Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, Am Chem Soc 11(8):8192–8198

    Article  CAS  Google Scholar 

  26. Ju L, Bie M, Tang X et al (2020) Janus WSSe monolayer: an excellent photocatalyst for overall water splitting[J]. ACS Appl Mater & Interfaces 12(26):29335–29343

    CAS  Google Scholar 

  27. Peng R, Ma Y, Huang B et al (2019) Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light[J]. J Mater Chem A 7(2):603–610

    Article  CAS  Google Scholar 

  28. Rudi SG, Soleimani-Amiri S, Rezavand A et al (2023) Enhanced performance of Janus XMSiY2 (X=S, Se; M=Mo, W; and Y=N, P) monolayers for photocatalytic water splitting via strain engineering[J]. J Phys Chem Solids 181:111561

    Article  CAS  Google Scholar 

  29. Mortazavi B, Javvaji B, Shojaei F et al (2021) Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles[J]. Nano Energy 82:105716

    Article  CAS  Google Scholar 

  30. Li X, Zhang K, Zeng X et al (2021) Electronic and photochemical properties of hybrid binary silicon and germanium derived Janus monolayers[J]. Phys Chem Chem Phys 23(32):17502–17511

    Article  CAS  PubMed  Google Scholar 

  31. Hong Y-L, Liu Z, Wang L et al (2020) Chemical vapor deposition of layered two-dimensional MoSi2N4 materials[J]. Science 369(6504):670–674

    Article  CAS  PubMed  Google Scholar 

  32. Sibatov RT, Meftakhutdinov RM, Kochaev AI (2022) Asymmetric XMoSiN2 (X=S, Se, Te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics[J]. Appl Surf Sci 585:152465

    Article  CAS  Google Scholar 

  33. Gao Z, He X, Li W et al (2023) Janus XMoAZ2 (X=S, Se, Te; A=Si, Ge; Z=N, P, As) monolayers: first-principles insight into electronic structures, optical and photocatalytic properties[J]. Appl Surf Sci 639:158146

    Article  CAS  Google Scholar 

  34. Deng S, Sumant AV, Berry V (2018) Strain engineering in two-dimensional nanomaterials beyond graphene[J]. Nano Today 22:14–35

    Article  CAS  Google Scholar 

  35. Khan SA, Amin B, Gan L-Y et al (2017) Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen[J]. Phys Chem Chem Phys 19(22):14738–14744

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Wu Y, Cui J et al (2020) Self-induced strain in 2D chalcogenide nanocrystals with enhanced photoelectrochemical responsivity[J]. Chem Mater 32(7):2774–2781

    Article  CAS  Google Scholar 

  37. Vaqueiro P, Powell AV (2000) Structures and properties of new ordered defect phases in the vanadium chromium sulfide system[J]. Chem Mater 12(9):2705–2714

    Article  CAS  Google Scholar 

  38. Li S, Hou S, Xue W et al (2022) Manipulation of phase structure and Se vacancy to enhance the average thermoelectric performance of AgBiSe2[J]. Mater Today Phys 27:100837

    Article  CAS  Google Scholar 

  39. Li H, Tsai C, Koh AL et al (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater, Nat Publ Group 15(1):48–53

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  41. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  42. Ernzerhof M, Scuseria GE (1999) Assessment of the perdew–burke–ernzerhof exchange-correlation functional[J]. J Chem Phys 110(11):5029–5036

    Article  CAS  Google Scholar 

  43. Marsman M, Paier J, Stroppa A et al (2008) Hybrid functionals applied to extended systems[J]. J Phys: Condens Matter 20(6):064201

    CAS  PubMed  Google Scholar 

  44. Blöchl PE (1994) Projector augmented-wave method[J]. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  45. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. J Comput Chem 25(12):1463–1473

    Article  CAS  PubMed  Google Scholar 

  46. Mathew K, Kolluru VSC, Mula S et al (2019) Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. J Chem Phys 151(23):234101

    Article  PubMed  Google Scholar 

  47. Mathew K, Sundararaman R, Letchworth-Weaver K et al (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. J Chem Phys 140(8):084106

    Article  PubMed  Google Scholar 

  48. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals[J]. Phys Rev 80(1):72–80

    Article  CAS  Google Scholar 

  49. Guo Z, Zhou J, Zhu L et al (2016) MXene: a promising photocatalyst for water splitting[J]. J Mater Chem A 4(29):11446–11452

    Article  CAS  Google Scholar 

  50. Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  51. Yu Y, Zhou J, Sun Z (2020) Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction[J]. Adv Func Mater 30(47):2000570

    Article  CAS  Google Scholar 

  52. Rossmeisl J, Chan K, Skúlason E et al (2016) On the pH dependence of electrochemical proton transfer barriers[J]. Catal Today 262:36–40

    Article  CAS  Google Scholar 

  53. Yuan G, Ma X, Liao J et al (2023) First-principles calculations of 2D janus WSSiN2 monolayer for photocatalytic water splitting[J]. ACS Appl Nano Mater 6(3):1956–1964

    Article  CAS  Google Scholar 

  54. Zhao P, Jiang Z-Y, Zheng J-M et al (2022) Theoretical study of a novel WSi2N4/MoSi2N4 heterostructure with ultrafast carrier transport[J]. The J Phys Chem C 126(27):11380–11388

    Article  CAS  Google Scholar 

  55. Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nat Mater 5(11):909–913

    Article  CAS  PubMed  Google Scholar 

  56. Ju L, Shang J, Tang X et al (2020) Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer[J]. J Am Chem Soc 142(3):1492–1500

    Article  CAS  PubMed  Google Scholar 

  57. Tsai C, Li H, Park S et al (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution[J]. Nat Commun 8(1):15113

    Article  PubMed  PubMed Central  Google Scholar 

  58. Er D, Ye H, Frey NC et al (2018) Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides[J]. Nano Lett 18(6):3943–3949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0708703), Natural Science Foundation of of Shandong Province (ZR2017MB053, ZR2023MB034), the Fundamental Research Funds for the Central Universities (20CX06002A)and Taishan Scholars Program of Shandong Province (tsqn201909071).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Yuhua Chi.

Ethics declarations

Competing of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1146 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Chi, Y., Ji, M. et al. The Photocatalytic Performance of JANUS SXSiN2 (X = Cr, Mo, W) Monolayers with Enhanced Carrier Migration. Catal Lett 154, 6195–6205 (2024). https://doi.org/10.1007/s10562-024-04818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10562-024-04818-4

Keywords