Skip to main content
Log in

High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The construction of an environmentally friendly and efficient photocatalyst for water splitting and hydrogen evolution can effectively alleviate the pressure of current energy consumption and environmental pollution. Herein, by using first-principles calculations, the MoSiGeN4/SiC heterojunction was studied as a potential photocatalyst. According to different stacking methods, 12 kinds of configurations of such heterojunction with high symmetry were constructed, among which four kinds show excellent stability and hence were further studied. The results show that such heterojunction is Z-scheme heterojunction, which not only has good light absorption efficiency, but also shows excellent performance of photocatalytic water splitting for hydrogen evolution. In addition, one of the stable configurations shows better photocatalytic hydrogen evolution performance than precious metal catalyst Pt, and the Gibbs free energy is only −0.039 eV. It is expected to prepare a hydrogen evolution catalyst with excellent performance. Further, the possible mechanism responsible for the excellent properties of MoSiGeN4/SiC heterojunction in photocatalysis has been revealed. Our research further enriches the theoretical research genealogy of MA2X4 family materials and guides the direction for further rational design of photocatalysts.

Graphical abstract

Schematic diagrams of all studied configurations, catalytic mechanism and HER performance characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kruitwagen L, Story KT, Friedrich J, Byers L, Skillman S, Hepburn C (2021) A global inventory of photovoltaic solar energy generating units. Nature 598:604–610

    CAS  Google Scholar 

  2. Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, Vinothkannan M, Kim AR, Sengodan S, Velusamy DB, Varadhan P, He J-H, Yoo DJ (2021) An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Appl Catal B: Environ 297:120405.

    CAS  Google Scholar 

  3. Lord J, Thomas A, Treat N, Forkin M, Bain R, Dulac P, Behroozi CH, Mamutov T, Fongheiser J, Kobilansky N, Washburn S, Truesdell C, Lee C, Schmaelzle PH (2021) Global potential for harvesting drinking water from air using solar energy. Nature 598:611–617

    Google Scholar 

  4. Wang Q, Tong X, Ricote S, Sažinas R, Hendriksen PV, Chen M (2021) Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3-δ electrodes for steam splitting in protonic ceramic electrolysis cells. Adv Powder Mater 1:100003

    Google Scholar 

  5. Ebihara M, Ikeda T, Okunaka S, Tokudome H, Domen K, Katayama K (2021) Charge carrier mapping for Z-scheme photocatalytic water-splitting sheet via categorization of microscopic time-resolved image sequences. Nat Commun 12:3716

    CAS  Google Scholar 

  6. Zhao D, Wang Y, Dong C-L, Huang Y-C, Chen J, Xue F, Shen S, Guo L (2021) Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy 6:388–397

    CAS  Google Scholar 

  7. Zhao G, Ma W, Wang X, Xing Y, Hao S, Xu X (2021) Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. Adv Powder Mater 1:100008

    Google Scholar 

  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  9. Elayappan V, Shanmugam R, Chinnusamy S, Yoo DJ, Mayakrishnan G, Kim K, Noh HS, Kim MK, Lee H (2020) Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution. Appl Surf Sci 505:144642

    CAS  Google Scholar 

  10. Sathiskumar C, Ramakrishnan S, Vinothkannan M, Karthikeyan S, Yoo DJ, Rhan-Kim A (2019) Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions. Nanomaterials (Basel), 10:76. https://doi.org/10.3390/nano10010076

    Article  CAS  Google Scholar 

  11. Zhao F, Feng Y, Wang Y, Zhang X, Liang X, Li Z, Zhang F, Wang T, Gong J, Feng W (2020) Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat Commun 11:1443

    CAS  Google Scholar 

  12. AkÇA A, Karaman O, Karaman C, Atar N, Yola ML (2021) A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: a DFT analysis. Surf Interfaces, 25:101293. https://doi.org/10.1016/j.surfin.2021

  13. Akça A, Karaman O, Karimi-Maleh H, Karimi F, Karaman C, Atar N, Yola ML, Erk N (2021) Mechanism of methanol decomposition on the Cu-Embedded graphene: a DFT study. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.09.028

  14. Akça A, Karaman O (2021) Electrocatalytic decomposition of formic acid catalyzed by M-embedded graphene (M = Ni and Cu): a DFT study. Top Catal 65:1–13

    Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  16. Sekhar Das N, Mitra S, Chowdhury A, Roy A (2022) Nonvolatile memristive devices based on in situ functionalized layered rGO-MoS2 nanocomposites. ECS J Solid State Sci Technol 11:071003

    Google Scholar 

  17. Vijayakumar E, Ramakrishnan S, Sathiskumar C, Yoo DJ, Balamurugan J, Noh HS, Kwon D, Kim YH, Lee H (2022) MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem Eng J 428:131115

    CAS  Google Scholar 

  18. Fu X, Wang D, Song X, Gao X, Jang J, Gao XJ (2020). Boron-based metallocene-like molecules and nanowires: a computational study. Chem Phys Lett, 747:137336. https://doi.org/10.1016/j.cplett.2020.137336

  19. Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang SA, Zhang G (2019) Two-dimensional honeycomb borophene oxide: strong anisotropy and nodal loop transformation. Nanoscale 11:2468–2475

    CAS  Google Scholar 

  20. Guo X, Zhang W, Zhang J, Zhou D, Tang X, Xu X, Li B, Liu H, Wang G (2020) Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14:3651–3659

    CAS  Google Scholar 

  21. Zeng J, Xu L, Dong K, Yang K, Wang LL (2021) Multiple heterojunction system of boron nitride-graphene/black phosphorene as highly efficient solar cell. Adv Theory Simulations 4:2100169

    CAS  Google Scholar 

  22. Goli M, Ansari R, Rouhi S, Aghdasi P, Mozvashi SM (2020) Influence of F and H adsorption on the elasto-plastic properties of silicene: a DFT investigation. Phys E: Low-Dimensional Syst Nanostruct, 119

  23. Wang S, Zhang P, Ren C, Tian H, Pang J, Song C, Sun M (2019) Valley hall effect and magnetic moment in magnetized silicene. J Supercond Novel Magn 32:2947–2957. https://doi.org/10.1007/s10948-019-5055-y

    CAS  Google Scholar 

  24. Xu L, Zeng J, Li Q, Luo X, Chen T, Liu J, Wang L-L (2022) Multifunctional silicene/CeO2 heterojunctions: desirable electronic material and promising water-splitting photocatalyst. Chinese Chem Lett 22:3947–3950. https://doi.org/10.1016/j.cclet.2021.11.026

    Article  CAS  Google Scholar 

  25. Zhang C, Ma Y, Zhang X, Abdolhosseinzadeh S, Sheng H, Lan W, Pakdel A, Heier J, Nüesch F (2020) Two-dimensional transition metal carbides and nitrides (MXenes): synthesis properties, and electrochemical energy storage applications. Energy Environ Mater 3:29–55

    CAS  Google Scholar 

  26. Huang X, Xu L, Li H, Tang S, Ma Z, Zeng J, Xiong F, Li Z, Wang L-L (2021) Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: a first principles study. Appl Surf Sci 570:151207

    CAS  Google Scholar 

  27. Idrees M, Din HU, Ali R, Rehman G, Hussain T, Nguyen CV, Ahmad I, Amin B (2019) Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys Chem Chem Phys 21:18612–18621

    CAS  Google Scholar 

  28. Wang S, Ukhtary MS, Saito R (2020) Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys Rev Res 2:03340

    Google Scholar 

  29. Xu L, Huang W-Q, Hu W, Yang K, Zhou B-X, Pan A, Huang G-F (2017) Two-dimensional MoS2-graphene-based multilayer van der waals heterostructures: enhanced charge transfer and optical absorption, and electric-field tunable dirac point and band gap. Chem Mater 29:5504–5512

    CAS  Google Scholar 

  30. Hong YL, Liu ZB, Wang L, Zhou TY, Ma W, Xu C, Feng S, Chen L, Chen ML, Sun DM, Chen XQ, Cheng HM, Ren WC (2020) Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369:670–674

    CAS  Google Scholar 

  31. Wang Q, Cao L, Liang S-J, Wu W, Wang G, Lee CH, Ong WL, Yang HY, Ang LK, Yang SA, Ang YS (2021) Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. NPJ 2D Mater Appl 5:71

    CAS  Google Scholar 

  32. Guo S-D, Mu W-Q, Zhu Y-T, Han R-Y, Ren W-C (2021) Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J Mater Chem C 9:2464–2473

    CAS  Google Scholar 

  33. Pang X, Wan C, Wang M, Lin Z (2014) Strictly biphasic soft and hard janus structures: synthesis, properties, and applications. Angew Chem Int Ed 53:5524–5538

    CAS  Google Scholar 

  34. Binh NTT, Nguyen CQ, Vu TV, Nguyen CV (2021) Interfacial electronic properties and tunable contact types in graphene/janus MoGeSiN4 heterostructures. J Phys Chem Lett 12:3934–3940

    CAS  Google Scholar 

  35. Van On V, Nhi NTT, Hung NT (2021) Investigate the fast melting process of 2D SiC model by molecular dynamics. J Phys: Conf Ser 1921:012114

    Google Scholar 

  36. Blochl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50:17953–17979

    CAS  Google Scholar 

  37. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 47:558–561

    CAS  Google Scholar 

  38. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    CAS  Google Scholar 

  39. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  40. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  41. Brugnoli L, Ferrari AM, Civalleri B, Pedone A, Menziani MC (2018) Assessment of density functional approximations for highly correlated oxides: the case of CeO2 and Ce2O3. J Chem Theory Comput 14:4914–4927

    CAS  Google Scholar 

  42. Xiong H, Cao C, Chen G, Liu B (2021) Revealing the adhesion strength and electronic properties of Ti3SiC2/Cu interface in Ti3SiC2 reinforced Cu-based composite by a first-principles study. Surf Interfaces 27:101467

    CAS  Google Scholar 

  43. Zeng J, Xu L, Luo X, Peng B, Ma Z, Wang L-L, Yang Y, Shuai C (2021) A novel design of SiH/CeO2(111) van der Waals type-II heterojunction for water splitting. Phys Chem Chem Phys 23:2812–2818

    CAS  Google Scholar 

  44. Zeng J, Xu L, Yang Y, Luo X, Li HJ, Xiong SX, Wang LL (2021) Boosting the photocatalytic hydrogen evolution performance of monolayer C2N coupled with MoSi2N4: density-functional theory calculations. Phys Chem Chem Phys 23:8318–8325

    CAS  Google Scholar 

  45. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    CAS  Google Scholar 

  46. Peng B, Xu L, Zeng J, Qi X, Yang Y, Ma Z, Huang X, Wang L-L, Shuai C (2021) Layer-dependent photocatalysts of GaN/SiC-based multilayer van der waals heterojunctions for hydrogen evolution, catalysis. Sci Technol 11:3059–3069

    CAS  Google Scholar 

  47. Yu Y, Zhou J, Guo Z, Sun Z (2021) Novel two-dimensional janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl Mater Interfaces 13:28090–28097

    CAS  Google Scholar 

  48. Malik A, Dhattarwal HS, Kashyap HK (2021) Distinct solvation structures of CO2 and SO2 in reline and ethaline deep eutectic solvents revealed by AIMD simulations. J Phys Chem B 125:1852–1860

    CAS  Google Scholar 

  49. Zeng J, Xu L, Luo X, Chen T, Tang S-H, Huang X, Wang L-L (2022) Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten 4:52–59

    Google Scholar 

  50. Pandya NY, Mevada AD, Gajjar PN (2016) Lattice dynamical and thermodynamic properties of FeNi3, FeNi and Fe3Ni invar materials. Comput Mater Sci 123:287–295

    CAS  Google Scholar 

  51. Yin Y, Li D, Hu Y, Ding G, Zhou H, Zhang G (2020) Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 31:315709

    CAS  Google Scholar 

  52. Zhang C, Sun J, Shen Y, Kang W, Wang Q (2022) Effect of high order phonon scattering on the thermal conductivity and its response to strain of a penta-NiN2 sheet. J Phys Chem Lett 13:5734–5741

    CAS  Google Scholar 

  53. Wang V, Liang Y-Y, Kawazoe Y, Geng W-T (2018) High-throughput computational screening of two-dimensional semiconductors, arXiv preprint arXiv:1806.04285

  54. Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt PS, Hinsche NF, Gjerding MN, Torelli D, Larsen PM, Riis-Jensen AC, Gath J, Jacobsen KW, Jørgen Mortensen J, Olsen T, Thygesen KS (2018) The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials 5:042002

    CAS  Google Scholar 

  55. Bouheddadj A, Ouahrani T, Kannhounon GW, Reda B, Bedrane S, Badawi M, Morales-García Á (2021) Low-dimensional HfS2 as SO2 adsorbent and gas sensor: effect of water and sulfur vacancies. Phys Chem Chem Phys 23:23655–23666. https://doi.org/10.1039/D1CP04069C

    Article  CAS  Google Scholar 

  56. Xing Y, Jian W, Xin M, Xingao L (2022) A novel 2D graphene oxide modified α-AgVO3 Nanorods: Design. Fabric Enhanced Visible-Light Photocatal Perform. J Adv Ceram 11:308–320. https://doi.org/10.1007/s40145-021-0534-6

    Article  CAS  Google Scholar 

  57. Ahmad I, Jafer R, Abbas SM, Ahmad N, Ata-ur R, Iqbal J, Bashir S, Melaibari AA, Khan MH (2022) Improving energy harvesting efficiency of dye sensitized solar cell by using cobalt-rGO co-doped TiO2 photoanode. J Alloys Compounds 891:162040

    CAS  Google Scholar 

  58. Tang W, Xie L, Liu Z, Zeng J, Zhou X, Bi P, Tang W, Yan L, Zhu X, Wong W-KR, Hao X-T, Zhu W, Wang X (2021) Panchromatic Terthiophenyl-benzodithiophene conjugated porphyrin donor for efficient organic solar cells. J Mater Chem C 10:1077–1083

    Google Scholar 

  59. Wang Z, Li R, Zhao K, Yu F, Zhao J-F, Zhen Y, Zhang Q (2021) A co-crystallization strategy toward high-performance N-type organic semiconductor switched from P-type planar azaacene derivative. J Mater Chem C 10:2757–2762

    Google Scholar 

  60. Yang Y, Cheng Y, Deng F, Shen L, Zhao Z, Peng S, Shuai C (2021) A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Bio-Design Manufact 4:452–468

    CAS  Google Scholar 

  61. Tang S, Xu L, Peng B, Xiong F, Chen T, Luo X, Huang X, Li H, Zeng J, Ma Z, Wang L-L (2022) Ga-doped Pd/CeO2 model catalysts for CO oxidation reactivity: a density functional theory study. Appl Surf Sci 575:11281–11289

    Google Scholar 

  62. Wang Y, Xu L, Zhan L, Yang P, Tang S, Liu M, Zhao X, Xiong Y, Chen Z, Lei Y (2022) Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy 92:106780

    CAS  Google Scholar 

  63. Xu L, Zeng J, Li Q, Xia L, Luo X, Ma Z, Peng B, Xiong S, Li Z, Wang L-L (2021) Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: efficient metal-free photocatalysts for hydrogen evolution. Appl Surf Sci 547:149207

    CAS  Google Scholar 

  64. Luo X, Zhou Y, Cai Y, Cheng Z, Liu Z, Wan W (2021) A review of perfect absorbers based on the two dimensional materials in the visible and near-infrared regimes. J Phys D: Appl Phys 55:093002

    Google Scholar 

  65. Ola O, Ullah H, Chen Y, Thummavichai K, Wang N, Zhu Y (2021) DFT and experimental studies of iron oxide-based nanocomposites for efficient electrocatalysis. J Mater Chem C 9:6409–6417

    CAS  Google Scholar 

  66. Ullah F, Ayub K, Mahmood T (2021) High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight. Int J Hydrogen Energy 46:37814–37823

    CAS  Google Scholar 

  67. Xu L, Huang X, Xiong S, Wang Z, Peng B, Ma Z, Zeng J, Li H, Tang S, Li Z, Wang L-L (2021) Type-II CeO2(111)/hBN vdW heterojunction for enhanced photocatalytic hydrogen evolution: a first principles study. Int J Hydrogen Energy 46:25060–25069

    CAS  Google Scholar 

  68. Jing H, Zhu P, Zheng X, Zhang Z, Wang D, Li Y (2021) Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater 1:100013

    Google Scholar 

  69. Chen XH, Li XL, Wu LL, Fu HC, Luo J, Shen L, Zhang Q, Lei JL, Luo HQ, Li NB (2021) Nb2O5–Ni3N Heterojunction tuned by interface oxygen vacancy engineering for the enhancement of electrocatalytic hydrogen evolution activity. J Mater Chem A 9:11563–11570. https://doi.org/10.1039/D1TA01872H

    Article  CAS  Google Scholar 

  70. Shen S, Lin Z, Song K, Wang Z, Huang L, Yan L, Meng F, Zhang Q, Gu L, Zhong W (2021) Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew Chem Int Ed 60:12360–12365

    CAS  Google Scholar 

  71. Zhou H, Zhang W, Li L, Sun F, Hong A (2021) Doping engineering: Highly improving hydrogen evolution reaction performance of monolayer SnSe. Int J Hydrogen Energy 46:37907–37914

    CAS  Google Scholar 

  72. Zhou W, Dong L, Tan L, Tang Q (2021) Enhancing the surface reactivity of black phosphorus on hydrogen evolution by covalent chemistry. J Phys Chem C 125:7581–7589

    CAS  Google Scholar 

  73. Xu L, Zeng J, Li Q, Chen T, Luo K-W, Luo X, Peng B, Ma Z, Wang L-L, Zhu X, Huang S, Liu D, Xiong SX, Shuai C (2020) Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles. Appl Surf Sci 530:147181

    CAS  Google Scholar 

  74. Xue Z, Zhang X, Qin J, Liu R (2021) TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J Energy Chem 55:437–443

    Google Scholar 

  75. Wang Q, Zhang Z, Cai C, Wang M, Zhao ZL, Li M, Huang X, Han S, Zhou H, Feng Z, Li L, Li J, Xu H, Francisco JS, Gu M (2021) Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J Am Chem Soc 143:13605–13615

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Jiangxi Provincial Natural Science Foundation (Grant Nos. 20202ACBL211004, 20212BAB201013, 2019BAB206019) and the Science and Technology Planning Project of Ganzhou City.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xu, Bin Xiao or Kejun Dong.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4834 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Xu, L., Xiao, B. et al. High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction. J Mater Sci 57, 16404–16417 (2022). https://doi.org/10.1007/s10853-022-07601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10853-022-07601-1