640 Publications

Active Liquid Crystal Theory Explains the Collective Organization of Microtubules in Human Mitotic Spindles

Colm P. Kelleher, S. Maddu, Mustafa Basaran, Thomas Müller-Reichert, M. Shelley, D. Needleman

How thousands of microtubules and molecular motors self-organize into spindles remains poorly understood. By combining static, nanometer-resolution, large-scale electron tomography reconstructions and dynamic, optical-resolution, polarized light microscopy, we test an active liquid crystal continuum model of mitotic spindles in human tissue culture cells. The predictions of this coarse-grained theory quantitatively agree with the experimentally measured spindle morphology and fluctuation spectra. These findings argue that local interactions and polymerization produce collective alignment, diffusive-like motion, and polar transport which govern the behaviors of the spindle's microtubule network, and provide a means to measure the spindle's material properties. This work demonstrates that a coarse-grained theory featuring measurable, physically-interpretable parameters can quantitatively describe the mechanical behavior and self-organization of human mitotic spindles.

Show Abstract
July 29, 2025

Stability of co-annular active and passive confined fluids

Tanumoy Dhar, M. Shelley, D. Saintillan

The translation and shape deformations of a passive viscous Newtonian droplet immersed in an active nematic liquid crystal under circular confinement are analyzed using a linear stability analysis. We focus on the case of a sharply aligned active nematic in the limit of strong elastic relaxation in two dimensions. Using an active liquid crystal model, we employ the Lorentz reciprocal theorem for Stokes flow to study the growth of interfacial perturbations as a result of both active and elastic stresses. Instabilities are uncovered in both extensile and contractile systems, for which growth rates are calculated and presented in terms of the dimensionless ratios of active, elastic, and capillary stresses, as well as the viscosity ratio between the two fluids. We also extend our theory to analyze the inverse scenario, namely, the stability of an active nematic droplet surrounded by a passive viscous layer. Our results highlight the subtle interplay of capillary, active, elastic, and viscous stresses in governing droplet stability. The instabilities uncovered here may be relevant to a plethora of biological active systems, from the dynamics of passive droplets in bacterial suspensions to the organization of subcellular compartments inside the cell and cell nucleus.

Show Abstract
July 25, 2025

Representational drift and learning-induced stabilization in the piriform cortex

Guillermo B. Morales, Miguel A. Muñoz, Y. Tu

The brain encodes external stimuli through patterns of neural activity, forming internal representations of the world. Increasing experimental evidence showed that neural representations for a specific stimulus can change over time in a phenomenon called “representational drift” (RD). However, the underlying mechanisms for this widespread phenomenon remain poorly understood. Here, we study RD in the piriform cortex of the olfactory system with a realistic neural network model that incorporates two general mechanisms for synaptic weight dynamics operating at two well-separated timescales: spontaneous multiplicative fluctuations on a scale of days and spike-timing-dependent plasticity (STDP) effects on a scale of seconds. We show that the slow multiplicative fluctuations in synaptic sizes, which lead to a steady-state distribution of synaptic weights consistent with experiments, can induce RD effects that are in quantitative agreement with recent empirical evidence. Furthermore, our model reveals that the fast STDP learning dynamics during presentation of a given odor drives the system toward a low-dimensional representational manifold, which effectively reduces the dimensionality of synaptic weight fluctuations and thus suppresses RD. Specifically, our model explains why representations of already “learned” odors drift slower than unfamiliar ones, as well as the dependence of the drift rate with the frequency of stimulus presentation—both of which align with recent experimental data. The proposed model not only offers a simple explanation for the emergence of RD and its relation to learning in the piriform cortex, but also provides a general theoretical framework for studying representation dynamics in other neural systems.

Show Abstract

Correlations, mean-field limits, and transition to the concentrated regime in motile particle suspensions

Bryce Palmer, S. Weady, M. O'Brien, B. Burkart, M. Shelley

Suspensions of swimming particles exhibit complex collective behaviors driven by hydrodynamic interactions, showing persistent large-scale flows and long-range correlations. While heavily studied, it remains unclear how such structures depend on the system size and swimmer concentration. To address these issues, we simulate very large systems of suspended swimmers across a range of system sizes and volume fractions. For this we use high-performance simulation tools that build on slender body theory and implicit resolution of steric interactions. At low volume fractions and long times, the particle simulations reveal dynamic flow structures and correlation functions that scale with the system size. These results are consistent with a mean-field limit and agree well with a corresponding kinetic theory. At higher concentrations, the system departs from mean-field behavior. Flow structures become cellular, and correlation lengths scale with the particle size. Here, translational motion is suppressed, while rotational dynamics dominate. These findings highlight the limitations of dilute mean-field models and reveal new behaviors in dense active suspensions.

Show Abstract
May 23, 2025

Flow interactions and forward flight dynamics of tandem flapping wings

Fang Fang, Christiana Mavroyiakoumou, Leif Ristroph, M. Shelley

We examine theoretically the flow interactions and forward flight dynamics of tandem or in-line flapping wings. Two wings are driven vertically with prescribed heaving-and-plunging motions, and the horizontal propulsion speeds and positions are dynamically selected through aero- or hydro-dynamic interactions. Our simulations employ an improved vortex sheet method to solve for the locomotion of the pair within the collective flow field, and we identify 'schooling states' in which the wings travel together with nearly constant separation. Multiple terminal configurations are achieved by varying the initial conditions, and the emergent separations are approximately integer multiples of the wavelength traced out by each wing. We explain the stability of these states by perturbing the follower and mapping out an effective potential for its position in the leader's wake. Each equilibrium position is stabilized since smaller separations are associated with in-phase follower-wake motions that constructively reinforce the flow but lead to decreased thrust on the follower; larger separations are associated with antagonistic follower-wake motions, increased thrust, and a weakened collective wake. The equilibria and their stability are also corroborated by a linearized theory for the motion of the leader, the wake it produces, and its effect on the follower. We also consider a weakly-flapping follower driven with lower heaving amplitude than the leader. We identify 'keep-up' conditions for which the wings may still 'school' together despite their dissimilar kinematics, with the 'freeloading' follower passively assuming a favorable position within the wake that permits it to travel significantly faster than it would in isolation.

Show Abstract
May 19, 2025

Charge distribution and helicity tune the binding of septin’s amphipathic helix domain to membranes

C. Edelmaier, Stephen J. Klawa, M. Mofidi, Qunzhao Wang, Shreeya Bhonge, Ellysa J. D. Vogt, Brandy N. Curtis, Wenzheng Shi, S. Hanson, Daphne Klotsa, M. Gregory Forest, Amy S. Gladfelter, Ronit Freeman, E. Nazockdast

Amphipathic helices (AHs) are secondary structures that can facilitate binding of proteins to the membrane by folding into a helix with hydrophobic and hydrophilic faces that interact with the same surfaces in the lipid membrane. Septins are cytoskeletal proteins that preferentially bind to domains of micron-scale curvature on the cell membrane. Studies have shown that AH domains in septin are essential for curvature sensing. We present the first computational study of septin AH interactions with lipid bilayers. Using all-atom simulations and metadynamics-enhanced sampling, we study the effect of charge distribution at the flanking ends of septin AH on the energy for helical folding and its consequences on the binding configuration and affinity to the membrane. This is relevant to septins, since the net positive charge on the flanking C-terminal amino acids is a conserved property across several organisms. Simulations revealed that the energy barrier for folding in the neutral-capped AH is much larger than the charge-capped AH, leading to a small fraction of AH folding and integration to the membrane compared to a significantly folded configuration in the bound charge-capped AH. These observations are consistent with the binding measurements of synthetic AH constructs with variable helicity to lipid vesicles. Additionally, we examined an extended AH sequence including eight amino acids upstream and downstream of the AH to mimic the native protein. Again, simulations and experiments show that the extended peptide, with a net positive charge at C-terminus, adopts a strong helical configuration in solution, giving rise to a higher membrane affinity. Altogether, these results identify the energy cost for folding of AHs as a regulator of AH binding configuration and affinity and provide a basic template for parameterizing AH-membrane interactions as a starting point for the future multiscale simulations for septin-membrane interactions.

Show Abstract

Formation of Drosophila germ cells requires spatial patterning of phospholipids

Marcus Kilwein, P. Miller, S. Shvartsman, et al.

Germline-soma segregation is crucial for fertility. Primordial germ cells (PGCs) arise early in development and are the very first cells to form in the Drosophila embryo. At the time of PGC formation, the embryo is a syncytium where nuclei divide within a common cytoplasm. Whereas invaginating plasma membrane furrows enclose nuclei to form somatic lineages during the 14th nuclear division cycle, PGCs emerge from the syncytium during the 9th division cycle in a mechanistically distinct process. PGC formation depends on maternally deposited germ granules localized at the embryo’s posterior pole. Germ granules trigger protrusion of membrane buds that enlarge to surround several nuclei that reach the posterior pole. Buds are remodeled to cells through mitotic division and constriction of the bud neck. Previous studies implicated F-actin,1 actin regulators,2,3 and contractile ring components4 in mitotic furrow formation, but what drives bud emergence and how germ granules provoke reshaping of the plasma membrane remain unknown. Here, we investigate the mechanism of germ-granule-induced bud formation. Treating the embryo as a pressurized elastic shell, we used mathematical modeling to examine possible mechanical mechanisms for local membrane protrusion. One mechanism, outward buckling produced by polymerization of a branched F-actin network, is supported by experimental data. Further, we show that germ granules modify membrane lipid composition, promoting local branched F-actin polymerization that initiates PGC formation. We propose that a mechanism for membrane lipid regulation of F-actin dynamics in migrating cells has been adapted for PGC formation in response to spatial cues provided by germ granules.

Show Abstract

InstaMap: instant-NGP for cryo-EM density maps

Geoffrey Woollard, P. Cossio, S. Hanson, et al.

Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.

Show Abstract

Active Hydrodynamic Theory of Euchromatin and Heterochromatin

Alex Rautu, Alexandra Zidovska, David Saintillan, M. Shelley

The genome contains genetic information essential for cell's life. The genome's spatial organization inside the cell nucleus is critical for its proper function including gene regulation. The two major genomic compartments -- euchromatin and heterochromatin -- contain largely transcriptionally active and silenced genes, respectively, and exhibit distinct dynamics. In this work, we present a hydrodynamic framework that describes the large-scale behavior of euchromatin and heterochromatin, and accounts for the interplay of mechanical forces, active processes, and nuclear confinement. Our model shows contractile stresses from cross-linking proteins lead to the formation of heterochromatin droplets via mechanically driven phase separation. These droplets grow, coalesce, and in nuclear confinement, wet the boundary. Active processes, such as gene transcription in euchromatin, introduce non-equilibrium fluctuations that drive long-range, coherent motions of chromatin as well as the nucleoplasm, and thus alter the genome's spatial organization. These fluctuations also indirectly deform heterochromatin droplets, by continuously changing their shape. Taken together, our findings reveal how active forces, mechanical stresses and hydrodynamic flows contribute to the genome's organization at large scales and provide a physical framework for understanding chromatin organization and dynamics in live cells.

Show Abstract
March 26, 2025

Recent Advances in Membrane Protein Simulations

James C. Gumbart, S. Hanson

imulating membrane proteins accurately combines two challenges into one: properly capturing the structure and dynamics of proteins as well as correctly representing the membrane environment in which they are usually embedded. Beginning with pioneering efforts in the 1980s and 1990s,1−7 both challenges have been met with increasing success over the years. Simulations of membrane proteins in realistic cellular contexts over many microseconds are now common.Concomitant advances in the determination of membrane protein structures, with over 50 unique structures determined 8 annually have further expanded the reach of simulations in this area. This Special Issue highlights a number of recent molecular dynamics (MD) simulations of membrane proteins and covers a wide range of applications and specialized techniques.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.