See More

snf5 null mutants are viable, but display reduced growth on glucose and sucrose, are unable to grow on raffinose, galactose, or glycerol, and are hypersensitive to lithium and calcium ions (1, 11, 35). snf5 null mutations are synthetically lethal in combination with dst1 null mutations (37, 38), and expression of an active Moloney murine leukemia virus (M-MuLV) integrase (IN) is lethal in rad52 null mutants, but not in rad52 snf5 double null mutants (41).

Snf5p is similar to Sfh1p, Drosophila SNR1, Schizosaccharomyces pombe Snf5p, and Arabidopsis thaliana BSH, which can partially complement the defects seen in snf5 null mutants (42, 45, 46, 49). Snf5p also has a region of similarity to zebrafish SMARCB1 and Caenorhabditis elegans R07E5.3 (24). The human homolog of Snf5p (SMARCB1) is a tumor suppressor, mutation of which is associated with oncogenesis (24, 51). SMARCB1 binds to Epstein-Barr virus (EBV) nuclear protein 2 (EBNA2), which is expressed in latently-infected B lymphocytes and is essential to the immortalization of B cells by EBV (53). Human SMARCB1 also binds to human papillomavirus (HPV) E1 protein in two-hybrid assays and stimulates HPV DNA replication in vitro (55). By regulating the structure of chromatin, chromatin remodeling complexes, all of which contain an ATPase as a central motor subunit, perform critical functions in the maintenance, transmission, and expression of eukaryotic genomes. The SWI/SNF chromatin remodeling complex is involved in DNA replication, stress response, and transcription, and binds DNA nonspecifically, altering nucleosome structure to facilitate binding of transcription factors. For some genes, transcriptional activators are able to target the SWI/SNF complex to upstream activation sequences (UAS) in the promoter. The SWI/SNF chromatin remodeling complex family contains two evolutionary conserved subclasses of chromatin remodeling factors, one subfamily includes yeast SWI/SNF, fly BAP, and mammalian BAF, and the other subfamily includes yeast RSC (Remodel the Structure of Chromatin), fly PBAP, and mammalian PBAF (7, 9, 2, 12, 13, 8, 17, 6, 20, 22, 23, 26, 27, 30, 32, 33, 34, 36, 39, 40, 43, 44, 47, 48, 50, 39, 52, 54, 56, 57, 35).

It appears that some human SWI/SNF subunits act as tumor suppressors and there is also evidence that human SWI/SNF subunits are involved in controlling cell growth via their interaction with other tumor suppressors (58). Expression of adenovirus E1A oncoproteins, which are regulators of cellular and viral transcription, in Saccharomyces cerevisiae requires the function of the SWI/SNF complex, and expression of E1A in wild-type cells leads to a specific loss of SWI/SNF dependent transcription. These results suggest that the SWI/SNF complex is a target of these oncoproteins in mammalian cells and that the disruption of normal cell cycle control by E1A may be due in part to altered activity of the SWI/SNF complex (59).", "date_edited": "2006-03-27"}, "literature_overview": {"primary_count": 91, "additional_count": 123, "review_count": 59, "go_count": 14, "phenotype_count": 12, "disease_count": 0, "interaction_count": 110, "regulation_count": 5, "ptm_count": 8, "funComplement_count": 0, "htp_count": 53, "total_count": 389}, "disease_overview": {"manual_disease_terms": [], "htp_disease_terms": [], "computational_annotation_count": 0, "date_last_reviewed": null}, "ecnumbers": [], "URS_ID": null, "main_strain": "S288C", "regulation_overview": {"regulator_count": 4, "target_count": 1, "paragraph": {"text": "SNF5 promoter is bound by Fkh1p; SNF5 promoter is bound by Xbp1p in response to heat; SNF5 transcription is regulated by Spt10p; SNF5 transcription is downregulated by Ixr1p in response to hypoxia", "date_edited": "2023-08-31", "references": [{"id": 371969, "display_name": "Ostrow AZ, et al. (2014)", "citation": "Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647", "pubmed_id": 24504085, "link": "/reference/S000156933", "year": 2014, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1371/journal.pone.0087647"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913637/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/24504085"}]}, {"id": 414327, "display_name": "Venters BJ, et al. (2011)", "citation": "Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92", "pubmed_id": 21329885, "link": "/reference/S000145602", "year": 2011, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1016/j.molcel.2011.01.015"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057419/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/21329885"}]}, {"id": 524734, "display_name": "Mendiratta G, et al. (2006)", "citation": "Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8", "pubmed_id": 16415340, "link": "/reference/S000114259", "year": 2006, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1074/jbc.M511416200"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/16415340"}]}, {"id": 407966, "display_name": "Vizoso-V\u00e1zquez A, et al. (2012)", "citation": "Vizoso-V\u00e1zquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84", "pubmed_id": 22189861, "link": "/reference/S000147832", "year": 2012, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1007/s00253-011-3785-2"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/22189861"}]}]}}, "reference_mapping": {"638930": 1, "636694": 2, "595387": 3, "617905": 4, "397497": 5, "616820": 6, "611245": 7, "600257": 8, "572435": 9, "553639": 10, "627050": 11, "591652": 12, "589270": 13, "622573": 14, "641072": 15, "646971": 16, "636210": 17, "628984": 18, "639439": 19, "615870": 20, "623641": 21, "635012": 22, "613366": 23, "586406": 24, "544367": 25, "619148": 26, "604412": 27, "531990": 28, "641962": 29, "593591": 30, "628236": 31, "584881": 32, "584872": 33, "580378": 34, "643583": 35, "547947": 36, "619652": 37, "631343": 38, "546954": 39, "546548": 40, "528249": 41, "614034": 42, "536087": 43, "529681": 44, "607071": 45, "601566": 46, "584878": 47, "584875": 48, "610689": 49, "584863": 50, "528240": 51, "639568": 52, "626727": 53, "584884": 54, "525675": 55, "636189": 56, "601809": 57, "556456": 58, "611554": 59, "599335": 60, "624823": 61, "601740": 62}, "history": [{"category": "Name", "history_type": "LSP", "note": "Name: HAF4", "date_created": "2010-02-16", "references": [{"id": 599335, "display_name": "Kuchin SV, et al. (1993)", "citation": "Kuchin SV, et al. (1993) Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces. Yeast 9(5):533-41", "pubmed_id": 8322516, "link": "/reference/S000056109", "year": 1993, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1002/yea.320090510"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/8322516"}]}]}, {"category": "Name", "history_type": "LSP", "note": "Name: SNF5", "date_created": "2000-05-19", "references": [{"id": 638930, "display_name": "Neigeborn L and Carlson M (1984)", "citation": "Neigeborn L and Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108(4):845-58", "pubmed_id": 6392017, "link": "/reference/S000042746", "year": 1984, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1093/genetics/108.4.845"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224269/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/6392017"}]}]}, {"category": "Name", "history_type": "LSP", "note": "Name: SWI10", "date_created": "2010-02-16", "references": [{"id": 622573, "display_name": "Breeden L and Nasmyth K (1987)", "citation": "Breeden L and Nasmyth K (1987) Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48(3):389-97", "pubmed_id": 3542227, "link": "/reference/S000048261", "year": 1987, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1016/0092-8674(87)90190-5"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/3542227"}]}]}, {"category": "Name", "history_type": "LSP", "note": "Name: TYE4", "date_created": "2010-02-16", "references": [{"id": 601740, "display_name": "Ciriacy M and Williamson VM (1981)", "citation": "Ciriacy M and Williamson VM (1981) Analysis of mutations affecting Ty-mediated gene expression in Saccharomyces cerevisiae. Mol Gen Genet 182(1):159-63", "pubmed_id": 6267430, "link": "/reference/S000055296", "year": 1981, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1007/BF00422784"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/6267430"}]}, {"id": 624823, "display_name": "Ciriacy M, et al. (1991)", "citation": "Ciriacy M, et al. (1991) Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr Genet 20(6):441-8", "pubmed_id": 1664298, "link": "/reference/S000047501", "year": 1991, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1007/BF00334769"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/1664298"}]}]}, {"category": "Sequence change", "history_type": "SEQUENCE", "note": "Sequence change: Two nucleotide substitutions within the coding region of SNF5/YBR289W resulted in an altered protein sequence. The start, stop, and reading frame remain the same, but protein residue 564 is now Aspartic Acid rather than Glutamic Acid.

\r\nNew    780521  ACAACCTCCCACCAATGTTCAGCCAACTATTGGCCAACTTCCTCAACTTCCAAAATTAAA  780580\r\n               |||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||\r\nOld    780517  ACAACCTCCCACCAATGTTCAGCCCACTATTGGCCAACTTCCTCAACTTCCAAAATTAAA  780576\r\n\r\nNew    781311  GATATTGTCGTGGGACAAAACCAGTTAATCGATCAATTTGAGTGGGACATCTCTAATAGT  781370\r\n               ||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||\r\nOld    781307  GATATTGTCGTGGGACAAAACCAGTTAATCGATCAATTTGAGTGGGAGATCTCTAATAGT  781366", "date_created": "2011-02-03", "references": [{"id": 374815, "display_name": "Engel SR, et al. (2014)", "citation": "Engel SR, et al. (2014) The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda) 4(3):389-98", "pubmed_id": 24374639, "link": "/reference/S000156273", "year": 2014, "urls": [{"display_name": "DOI full text", "link": "http://dx.doi.org/10.1534/g3.113.008995"}, {"display_name": "PMC full text", "link": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962479/"}, {"display_name": "PubMed", "link": "http://www.ncbi.nlm.nih.gov/pubmed/24374639"}]}]}], "complexes": [{"format_name": "CPX-1150", "display_name": "SWI/SNF chromatin remodelling complex"}]},
        tabs: {"id": 1267005, "protein_tab": true, "interaction_tab": true, "summary_tab": true, "go_tab": true, "sequence_section": true, "expression_tab": true, "phenotype_tab": true, "literature_tab": true, "wiki_tab": false, "regulation_tab": true, "sequence_tab": true, "history_tab": true, "homology_tab": true, "disease_tab": false}
    };


	
	
	
    
    
	
    SNF5 | SGD
    
	
	
	









	
	

SNF5 / YBR289W Overview


Standard Name
SNF5 1
Systematic Name
YBR289W
SGD ID
SGD:S000000493
Aliases
HAF4 60 , SWI10 14 , TYE4 61 62
Feature Type
ORF , Verified
Description
Subunit of the SWI/SNF chromatin remodeling complex; involved in transcriptional regulation; functions interdependently in transcriptional activation with Snf2p and Snf6p; relocates to the cytosol under hypoxic conditions 2 3 5
Name Description
Sucrose NonFermenting 4
Comparative Info
Sequence Details

Sequence

The S. cerevisiae Reference Genome sequence is derived from laboratory strain S288C. Download DNA or protein sequence, view genomic context and coordinates. Click "Sequence Details" to view all sequence information for this locus, including that for other strains.


Summary
SNF5 is located on the right arm of chromosome II near the telomere between APM3 Mu3-like subunit of the clathrin associated protein complex and BSD2 heavy metal ion homeostasis protein; coding sequence is 2718 nucleotides long with 38 SNPs and several microsatellites
Protein Details

Protein

Basic sequence-derived (length, molecular weight, isoelectric point) and experimentally-determined (median abundance, median absolute deviation) protein information. Click "Protein Details" for further information about the protein such as half-life, abundance, domains, domains shared with other proteins, protein sequence retrieval for various strains, physico-chemical properties, protein modification sites, and external identifiers for the protein.


Summary
Snf5p is 905 amino acids long, low in abundance; contains multiple polyglutamine repeats (QQQ...), 151 of the 905 residues are glutamine; acetylated on K350, ubiquitinylated on K154 and K447, phosphorylated on 9 residues
Length (a.a.)
905
Mol. Weight (Da)
102547.0
Isoelectric Point
8.49
Median Abundance (molecules/cell)
1956 +/- 832

Alleles

Curated mutant alleles for the specified gene, listed alphabetically. Click on the allele name to open the allele page. Click "SGD search" to view all alleles in search results.


View all SNF5 alleles in SGD search

Gene Ontology Details

Gene Ontology

GO Annotations consist of four mandatory components: a gene product, a term from one of the three Gene Ontology (GO) controlled vocabularies (Molecular Function, Biological Process, and Cellular Component), a reference, and an evidence code. SGD has manually curated and high-throughput GO Annotations, both derived from the literature, as well as computational, or predicted, annotations. Click "Gene Ontology Details" to view all GO information and evidence for this locus as well as biological processes it shares with other genes.


Summary
DNA-binding and transcription-factor-binding subunit of the SWI/SNF chromatin remodelling complex, which disrupts chromatin structure to enhance binding of transcription factors; involved in carbon catabolite activation of RNA Pol II transcription, double-strand break repair, and activation of invasive growth in response to glucose limitation; localizes to the nucleus and to the cytosol during response to hypoxia

View computational annotations

Molecular Function

Manually Curated

Cellular Component

Manually Curated

Complex

Macromolecular complex annotations are imported from the Complex Portal. These annotations have been derived from physical molecular interaction evidence extracted from the literature and cross-referenced in the entry, or by curator inference from information on homologs in closely related species or by inference from scientific background.


Phenotype Details

Phenotype

Phenotype annotations for a gene are curated single mutant phenotypes that require an observable (e.g., "cell shape"), a qualifier (e.g., "abnormal"), a mutant type (e.g., null), strain background, and a reference. In addition, annotations are classified as classical genetics or high-throughput (e.g., large scale survey, systematic mutation set). Whenever possible, allele information and additional details are provided. Click "Phenotype Details" to view all phenotype annotations and evidence for this locus as well as phenotypes it shares with other genes.


Summary
Non-essential gene in reference strain S288C; null mutant displays slow growth, UV sensitivity, defects in using glutamate as nitrogen source, increased cell size, small nucleolus, overexpanded ER with disorganized cytosolic structures, decreased competitive growth, decreased chronological lifespan, abnormal sporulation, decreased respiratory growth, and sensitivity to hydroxyurea, methyl methanesulfonate, azoles, various antifungals, various metals, heat, Congo Red, sorbate, boric acid, caffeine, cycloheximide
Interaction Details

Interaction

Interaction annotations are curated by BioGRID and include physical or genetic interactions observed between at least two genes. An interaction annotation is composed of the interaction type, name of the interactor, assay type (e.g., Two-Hybrid), annotation type (e.g., manual or high-throughput), and a reference, as well as other experimental details. Click "Interaction Details" to view all interaction annotations and evidence for this locus, including an interaction visualization.


Summary
Snf5p interacts physically with proteins involved in transcription; SNF5 interacts genetically with genes involved in transcription

692 total interactions for 519 unique genes

Physical Interactions

  • Affinity Capture-MS: 107
  • Affinity Capture-RNA: 8
  • Affinity Capture-Western: 32
  • Co-crystal Structure: 2
  • Co-localization: 2
  • Co-purification: 5
  • PCA: 1
  • Reconstituted Complex: 13
  • Two-hybrid: 3

Genetic Interactions

  • Dosage Growth Defect: 2
  • Dosage Lethality: 2
  • Dosage Rescue: 1
  • Negative Genetic: 290
  • Phenotypic Enhancement: 3
  • Phenotypic Suppression: 6
  • Positive Genetic: 186
  • Synthetic Growth Defect: 16
  • Synthetic Lethality: 11
  • Synthetic Rescue: 2
Regulation Details

Regulation

The number of putative Regulators (genes that regulate it) and Targets (genes it regulates) for the given locus, based on experimental evidence. This evidence includes data generated through high-throughput techniques. Click "Regulation Details" to view all regulation annotations, shared GO enrichment among regulation Targets, and a regulator/target diagram for the locus.


Summary
SNF5 promoter is bound by Fkh1p; SNF5 promoter is bound by Xbp1p in response to heat; SNF5 transcription is regulated by Spt10p; SNF5 transcription is downregulated by Ixr1p in response to hypoxia
Regulators
4
Targets
1
Expression Details

Expression

Expression data are derived from records contained in the Gene Expression Omnibus (GEO), and are first log2 transformed and normalized. Referenced datasets may contain one or more condition(s), and as a result there may be a greater number of conditions than datasets represented in a single clickable histogram bar. The histogram division at 0.0 separates the down-regulated (green) conditions and datasets from those that are up-regulated (red). Click "Expression Details" to view all expression annotations and details for this locus, including a visualization of genes that share a similar expression pattern.


Summary Paragraph

A summary of the locus, written by SGD Biocurators following a thorough review of the literature. Links to gene names and curated GO terms are included within the Summary Paragraphs.


Last Updated: 2006-03-27

Literature Details

Literature

All manually curated literature for the specified gene, organized into topics according to their relevance to the gene (Primary Literature, Additional Literature, or Review). Click "Literature Details" to view all literature information for this locus, including shared literature between genes.


Primary
91
Additional
123
Reviews
59

Resources


© Stanford University, Stanford, CA 94305.