Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homeostasis control in health and disease by the unfolded protein response

Abstract

Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins — essential for cellular structure–function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) — a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic, tunable unfolded protein response signalling and outcomes in health and disease.
Fig. 2: Functional diversification of the unfolded protein response across evolutionary scales.
Fig. 3: Homeostatic regulation by the unfolded protein response across biological levels.
Fig. 4: The unfolded protein response programmes.
Fig. 5: The unfolded protein response in disease.

Similar content being viewed by others

References

  1. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    CAS  PubMed  Google Scholar 

  2. Karagoz, G. E., Acosta-Alvear, D. & Walter, P. The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 11, a033886 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim, J. & Bai, H. Peroxisomal stress response and inter-organelle communication in cellular homeostasis and aging. Antioxidants 11, 192 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, S., Ramalho, T. R. & Haynes, C. M. Regulation of proteostasis and innate immunity via mitochondria–nuclear communication. J. Cell Biol. 223, e202310005 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, W. K., Choi, W., Deshar, B., Kang, S. & Kim, J. Golgi stress response: new insights into the pathogenesis and therapeutic targets of human diseases. Mol. Cell 46, 191–199 (2023).

    CAS  Google Scholar 

  6. Lakpa, K. L., Khan, N., Afghah, Z., Chen, X. & Geiger, J. D. Lysosomal stress response (LSR): physiological importance and pathological relevance. J. Neuroimmune Pharmacol. 16, 219–237 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Ramundo, S. et al. Conditional depletion of the Chlamydomonas chloroplast ClpP protease activates nuclear genes involved in autophagy and plastid protein quality control. Plant Cell 26, 2201–2222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sirbu, B. M. & Cortez, D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb. Perspect. Biol. 5, a012724 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F. U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2, a004390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94 (2016).

    CAS  PubMed  Google Scholar 

  11. Gebert, M., Slawski, J., Kalinowski, L., Collawn, J. F. & Bartoszewski, R. The unfolded protein response: a double-edged sword for brain health. Antioxidants 12, 1648 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hetz, C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 184, 1545–1560 (2021).

    CAS  PubMed  Google Scholar 

  13. Kim, P. Understanding the unfolded protein response (UPR) pathway: insights into neuropsychiatric disorders and therapeutic potentials. Biomol. Ther. 32, 183–191 (2024).

    CAS  Google Scholar 

  14. Lemmer, I. L., Willemsen, N., Hilal, N. & Bartelt, A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol. Metab. 47, 101169 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yong, J., Johnson, J. D., Arvan, P., Han, J. & Kaufman, R. J. Therapeutic opportunities for pancreatic beta-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 17, 455–467 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, F. & Doroudgar, S. IRE1/XBP1 and endoplasmic reticulum signaling — from basic to translational research for cardiovascular disease. Curr. Opin. Physiol. 28, 100552 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren, J., Bi, Y., Sowers, J. R., Hetz, C. & Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 18, 499–521 (2021).

    PubMed  Google Scholar 

  18. Ajoolabady, A. et al. Endoplasmic reticulum stress in liver diseases. Hepatology 77, 619–639 (2023).

    PubMed  Google Scholar 

  19. Jackson, K. G., Way, G. W., Zeng, J., Lipp, M. K. & Zhou, H. The dynamic role of endoplasmic reticulum stress in chronic liver disease. Am. J. Pathol. 193, 1389–1399 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Iyer, S. & Adams, D. J. Bone and the unfolded protein response: in sickness and in health. Calcif. Tissue Int. 113, 96–109 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Afroze, D. & Kumar, A. ER stress in skeletal muscle remodeling and myopathies. FEBS J. 286, 379–398 (2019).

    CAS  PubMed  Google Scholar 

  22. Barrera, M. J. et al. Endoplasmic reticulum stress in autoimmune diseases: can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjogren’s syndrome. Autoimmun. Rev. 17, 796–808 (2018).

    CAS  PubMed  Google Scholar 

  23. Alshareef, M. H., Hartland, E. L. & McCaffrey, K. Effectors targeting the unfolded protein response during intracellular bacterial infection. Microorganisms 9, 705 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasad, V. & Greber, U. F. The endoplasmic reticulum unfolded protein response — homeostasis, cell death and evolution in virus infections. FEMS Microbiol. Rev. 45, fuab016 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Salvagno, C., Mandula, J. K., Rodriguez, P. C. & Cubillos-Ruiz, J. R. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 8, 930–943 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oakes, S. A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol. 190, 934–946 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Urra, H., Dufey, E., Avril, T., Chevet, E. & Hetz, C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2, 252–262 (2016).

    PubMed  Google Scholar 

  28. Kroeger, H., Chiang, W. C., Felden, J., Nguyen, A. & Lin, J. H. ER stress and unfolded protein response in ocular health and disease. FEBS J. 286, 399–412 (2019).

    CAS  PubMed  Google Scholar 

  29. Trouve, P., Ferec, C. & Genin, E. The interplay between the unfolded protein response, inflammation and infection in cystic fibrosis. Cells 10, 2980 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marciniak, S. J. et al. New concepts in alpha-1 antitrypsin deficiency disease mechanisms. Ann. Am. Thorac. Soc. 13, S289–S296 (2016).

    PubMed  Google Scholar 

  31. Mori, K. Evolutionary aspects of the unfolded protein response. Cold Spring Harb. Perspect. Biol. 14, a041262 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Karagoz, G. E., Aragon, T. & Acosta-Alvear, D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res https://doi.org/10.12688/f1000research.19848.1 (2019).

  33. Li, H., Korennykh, A. V., Behrman, S. L. & Walter, P. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl Acad. Sci. USA 107, 16113–16118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Belyy, V., Zuazo-Gaztelu, I., Alamban, A., Ashkenazi, A. & Walter, P. Endoplasmic reticulum stress activates human IRE1alpha through reversible assembly of inactive dimers into small oligomers. eLife 11, e74342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Belyy, V., Tran, N. H. & Walter, P. Quantitative microscopy reveals dynamics and fate of clustered IRE1alpha. Proc. Natl Acad. Sci. USA 117, 1533–1542 (2020).

    CAS  PubMed  Google Scholar 

  36. Tran, N. H. et al. The stress-sensing domain of activated IRE1alpha forms helical filaments in narrow ER membrane tubes. Science 374, 52–57 (2021). This paper shows that the intracellular foci formed by IRE1 upon ER stress localize to a network of narrow anastomosing ER tubes, wherein IRE1-lumenal-domain dimers assemble into helical filaments.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yildirim, Z. et al. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol. Med. 14, e15344 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cairrao, F. et al. Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay. Nat. Commun. 13, 1587 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  40. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  41. Kanda, S., Yanagitani, K., Yokota, Y., Esaki, Y. & Kohno, K. Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway. Proc. Natl Acad. Sci. USA 113, E5886–E5895 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shanmuganathan, V. et al. Structural and mutational analysis of the ribosome-arresting human XBP1u. eLife 8, e46267 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Peschek, J., Acosta-Alvear, D., Mendez, A. S. & Walter, P. A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Rep. 16, 1688–1698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Y., Liang, F. X. & Wang, X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell 55, 758–770 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Kosmaczewski, S. G. et al. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep. 15, 1278–1285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jurkin, J. et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 33, 2922–2936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565–575 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshida, H., Uemura, A. & Mori, K. pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell Struct. Funct. 34, 1–10 (2009).

    CAS  PubMed  Google Scholar 

  49. Matabishi-Bibi, L., Challal, D., Barucco, M., Libri, D. & Babour, A. Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat. Commun. 13, 6331 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo, X., Alfason, L., Wei, M., Wu, S. & Kasim, V. Spliced or unspliced, that is the question: the biological roles of XBP1 isoforms in pathophysiology. Int. J. Mol. Sci. 23, 2746 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bae, D., Moore, K. A., Mella, J. M., Hayashi, S. Y. & Hollien, J. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J. Cell Biol. 218, 1118–1127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bae, D. et al. Regulation of Blos1 by IRE1 prevents the accumulation of Huntingtin protein aggregates. Mol. Biol. Cell 33, ar125 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu, M. et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Almanza, A. et al. Regulated IRE1alpha-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat. Commun. 13, 2493 (2022). This paper reveals that ER stress triggers apoptosis through cell-autonomous activation of DR5 and that during the adaptive phase of the UPR, IRE1 blocks PERK-driven DR5 mRNA upregulation via RIDD, allowing time for stress mitigation.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Guttman, O. et al. Antigen-derived peptides engage the ER stress sensor IRE1alpha to curb dendritic cell cross-presentation. J. Cell Biol. 221, e202111068 (2022). This paper shows that in DCs, antigen-derived peptides entering the ER activate IRE1, leading to RIDD-mediated degradation of MHC-I heavy chains and thereby curtailing antigen cross-presentation to T cells and antitumour immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Thomas, A. et al. Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1alpha. Nat. Commun. 12, 7310 (2021). This paper demonstrates that IRE1 degrades mRNAs not only via canonical stem–loop endomotif-directed cleavage (RIDD) but also through non-canonical, endomotif-lacking decay (RIDDLE) and provides a public algorithm to identify RIDD-targeted sequences.

    PubMed  PubMed Central  Google Scholar 

  58. Grey, M. J. et al. IRE1beta negatively regulates IRE1alpha signaling in response to endoplasmic reticulum stress. J. Cell Biol. 219, e201904048 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Neidhardt, L. et al. The IRE1beta-mediated unfolded protein response is repressed by the chaperone AGR2 in mucin producing cells. EMBO J. 43, 719–753 (2024).

    PubMed  Google Scholar 

  60. Zhang, K. et al. The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  64. Rowlands, A. G., Panniers, R. & Henshaw, E. C. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J. Biol. Chem. 263, 5526–5533 (1988).

    CAS  PubMed  Google Scholar 

  65. Kashiwagi, K. et al. Structural basis for eIF2B inhibition in integrated stress response. Science 364, 495–499 (2019).

    CAS  PubMed  Google Scholar 

  66. Adomavicius, T. et al. The structural basis of translational control by eIF2 phosphorylation. Nat. Commun. 10, 2136 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Kenner, L. R. et al. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science 364, 491–495 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schoof, M. et al. eIF2B conformation and assembly state regulate the integrated stress response. eLife 10, e65703 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Merrick, W. C. & Pavitt, G. D. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol. 10, a033092 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein, P. et al. Temporal control of the integrated stress response by a stochastic molecular switch. Sci. Adv. 8, eabk2022 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Batjargal, T. et al. Optogenetic control of the integrated stress response reveals proportional encoding and the stress memory landscape. Cell Syst. 14, 551–562.e5 (2023).

    CAS  PubMed  Google Scholar 

  74. Magg, V. et al. Turnover of PPP1R15A mRNA encoding GADD34 controls responsiveness and adaptation to cellular stress. Cell Rep. 43, 114069 (2024).

    CAS  PubMed  Google Scholar 

  75. Jousse, C. et al. Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767–775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, P. et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, Y. et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell. Biol. 32, 5129–5139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Back, S. H. et al. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10, 13–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Oka, O. B. V. et al. Activation of the UPR sensor ATF6alpha is regulated by its redox-dependent dimerization and ER retention by ERp18. Proc. Natl Acad. Sci. USA 119, e2122657119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 27, 1027–1043 (2007).

    CAS  PubMed  Google Scholar 

  81. Koba, H. et al. Reinvestigation of disulfide-bonded oligomeric forms of the unfolded protein response transducer ATF6. Cell Struct. Funct. 45, 9–21 (2020).

    CAS  PubMed  Google Scholar 

  82. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell 13, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  83. Correll, R. N. et al. Overlapping and differential functions of ATF6alpha versus ATF6beta in the mouse heart. Sci. Rep. 9, 2059 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Thuerauf, D. J., Morrison, L. & Glembotski, C. C. Opposing roles for ATF6alpha and ATF6beta in endoplasmic reticulum stress response gene induction. J. Biol. Chem. 279, 21078–21084 (2004).

    CAS  PubMed  Google Scholar 

  85. Ansar, M, et al. Mutation of ATF6 causes autosomal recessive achromatopsia. Hum. Genet. 134, 941–950 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kohl, S. et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat. Genet. 47, 757–765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martyn, A. C. et al. Luman/CREB3 recruitment factor regulates glucocorticoid receptor activity and is essential for prolactin-mediated maternal instinct. Mol. Cell. Biol. 32, 5140–5150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Penney, J. et al. LUMAN/CREB3 is a key regulator of glucocorticoid-mediated stress responses. Mol. Cell. Endocrinol. 439, 95–104 (2017).

    CAS  PubMed  Google Scholar 

  89. Murakami, T. et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11, 1205–1211 (2009).

    CAS  PubMed  Google Scholar 

  90. Saito, A. et al. Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat. Commun. 3, 967 (2012).

    PubMed  Google Scholar 

  91. Sec23a pathway is essential for chondrogenesis. Nat. Cell Biol. 11, 1197–1204 (2009).

  92. Luebke-Wheeler, J. et al. Hepatocyte nuclear factor 4alpha is implicated in endoplasmic reticulum stress-induced acute phase response by regulating expression of cyclic adenosine monophosphate responsive element binding protein H. Hepatology 48, 1242–1250 (2008).

    CAS  PubMed  Google Scholar 

  93. Nakagawa, Y. et al. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system. Sci. Rep. 6, 27857 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagamori, I. et al. The testes-specific bZip type transcription factor Tisp40 plays a role in ER stress responses and chromatin packaging during spermiogenesis. Genes Cell 11, 1161–1171 (2006).

    CAS  Google Scholar 

  95. McCurdy, E. P., Chung, K. M., Benitez-Agosto, C. R. & Hengst, U. Promotion of axon growth by the secreted end of a transcription factor. Cell Rep. 29, 363–377.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Saito, A. et al. Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol. Cell 53, 127–139 (2014).

    CAS  PubMed  Google Scholar 

  97. Sato, Y., Nadanaka, S., Okada, T., Okawa, K. & Mori, K. Luminal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell Struct. Funct. 36, 35–47 (2011).

    CAS  PubMed  Google Scholar 

  98. Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y. & Kohno, K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J. Cell Biol. 167, 445–456 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Karagoz, G. E. et al. An unfolded protein-induced conformational switch activates mammalian IRE1. eLife 6, e30700 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Simpson, M. S. et al. IRE1alpha recognizes a structural motif in cholera toxin to activate an unfolded protein response. J. Cell Biol. 223, e202402062 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Carrara, M., Prischi, F., Nowak, P. R. & Ali, M. M. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. EMBO J. 34, 1589–1600 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, P., Li, J. & Sha, B. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins. Acta Crystallogr. D Struct. Biol. 72, 1290–1297 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, P., Li, J., Tao, J. & Sha, B. The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J. Biol. Chem. 293, 4110–4121 (2018).

    CAS  PubMed  Google Scholar 

  106. Amin-Wetzel, N. et al. A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell 171, 1625–1637.e13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sepulveda, D. et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1alpha. Mol. Cell 69, 238–252.e7 (2018).

    CAS  PubMed  Google Scholar 

  108. Eletto, D., Eletto, D., Dersh, D., Gidalevitz, T. & Argon, Y. Protein disulfide isomerase A6 controls the decay of IRE1alpha signaling via disulfide-dependent association. Mol. Cell 53, 562–576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tung, J. et al. A genome-wide CRISPR/Cas9 screen identifies calreticulin as a selective repressor of ATF6alpha. eLife 13, e96979 (2024).

    Google Scholar 

  110. Radanovic, T. & Ernst, R. The unfolded protein response as a guardian of the secretory pathway. Cells 10, 2965 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tam, A. B. et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell 46, 327–343.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    CAS  PubMed  Google Scholar 

  113. Adachi, Y. et al. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 75–89 (2008).

    CAS  PubMed  Google Scholar 

  114. Bommiasamy, H. et al. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626–1636 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gade, P. et al. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc. Natl Acad. Sci. USA 109, 10316–10321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448–7459 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Okada, T., Yoshida, H., Akazawa, R., Negishi, M. & Mori, K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366, 585–594 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sriburi, R., Jackowski, S., Mori, K. & Brewer, J. W. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 167, 35–41 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fun, X. H. & Thibault, G. Lipid bilayer stress and proteotoxic stress-induced unfolded protein response deploy divergent transcriptional and non-transcriptional programmes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158449 (2020).

    CAS  PubMed  Google Scholar 

  120. Ho, N. et al. Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. J. Cell Biol. 219, e201909165 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    CAS  PubMed  Google Scholar 

  123. Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yoshida, H. et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239–1248 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  126. Quiros, P. M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Linares, J. F. et al. ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 26, 817–829.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chang, T. K. et al. Coordination between two branches of the unfolded protein response determines apoptotic cell fate. Mol. Cell 71, 629–636.e5 (2018). This paper demonstrates that PERK attenuates IRE1 signalling via the phosphatase RPAP2 to abort failed ER-stress adaptation and enforce DR5-mediated apoptosis.

    CAS  PubMed  Google Scholar 

  129. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249–1259 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Maytin, E. V., Ubeda, M., Lin, J. C. & Habener, J. F. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp. Cell Res. 267, 193–204 (2001).

    CAS  PubMed  Google Scholar 

  132. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu, K., Zhao, C., Adajar, R. C., DeZwaan-McCabe, D. & Rutkowski, D. T. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. EMBO Rep. 25, 228–253 (2024).

    PubMed  PubMed Central  Google Scholar 

  134. Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495–45502 (2004).

    CAS  PubMed  Google Scholar 

  135. Pelizzari-Raymundo, D. et al. IRE1 RNase controls CD95-mediated cell death. EMBO Rep. 25, 1792–1813 (2024).

    PubMed  PubMed Central  Google Scholar 

  136. Shemorry, A. et al. Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. eLife 8, e47084 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Fink, E. E. et al. XBP1–KLF9 axis acts as a molecular rheostat to control the transition from adaptive to cytotoxic unfolded protein response. Cell Rep. 25, 212–223.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lerner, A. G. et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Upton, J. P. et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 338, 818–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chitnis, N. S. et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol. Cell 48, 353–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, F., Chang, L. & Hu, J. Activating transcription factor 6 regulated cell growth, migration and inhibited cell apoptosis and autophagy via MAPK pathway in cervical cancer. J. Reprod. Immunol. 139, 103120 (2020).

    CAS  PubMed  Google Scholar 

  142. Acosta-Alvear, D. et al. The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. eLife 7, e43036 (2018). This paper shows that IRE1 physically associates with the ER protein co-translational translocation machinery, establishing a connection between the UPR and protein synthesis.

    PubMed  PubMed Central  Google Scholar 

  143. Plumb, R., Zhang, Z. R., Appathurai, S. & Mariappan, M. A functional link between the co-translational protein translocation pathway and the UPR. eLife 4, e07426 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ozcan, U. et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29, 541–551 (2008). This paper reveals that obesity causes lingering ER stress and links the IRE1 branch of the UPR to impaired peripheral insulin signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mafi, S. et al. The mTOR signaling pathway interacts with the ER stress response and the unfolded protein response in cancer. Cancer Res. 83, 2450–2460 (2023).

    CAS  PubMed  Google Scholar 

  147. Hofmann, C. et al. mTORC1 inhibition impairs activation of the unfolded protein response and induces cell death during ER stress in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 325, H311–H320 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Babcock, J. T. et al. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response. J. Biol. Chem. 288, 15687–15698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. De Leonibus, C. et al. Sestrin2 drives ER-phagy in response to protein misfolding. Dev. Cell 59, 2035–2052.e10 (2024).

    PubMed  PubMed Central  Google Scholar 

  150. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Carmosino, M. et al. The expression of lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca(2+) handling. J. Cell. Mol. Med. 20, 2194–2207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Vidak, S., Serebryannyy, L. A., Pegoraro, G. & Misteli, T. Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2. Cell Rep. 42, 112534 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. West, G. et al. Deleterious assembly of the lamin A/C mutant p.S143P causes ER stress in familial dilated cardiomyopathy. J. Cell Sci. 129, 2732–2743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zuazo-Gaztelu, I. et al. A nonenzymatic dependency on inositol-requiring enzyme 1 controls cancer cell cycle progression and tumor growth. Preprint at bioRxiv https://doi.org/10.1101/2023.11.22.567905 (2023).

  155. Perea, V. et al. PERK signaling promotes mitochondrial elongation by remodeling membrane phosphatidic acid. EMBO J. 42, e113908 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lebeau, J. et al. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep. 22, 2827–2836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2alpha axis. Mol. Cell 74, 877–890.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Brar, K. K. et al. PERK–ATAD3A interaction provides a subcellular safe haven for protein synthesis during ER stress. Science 385, eadp7114 (2024).

    CAS  PubMed  Google Scholar 

  159. Bassot, A. et al. The endoplasmic reticulum kinase PERK interacts with the oxidoreductase ERO1 to metabolically adapt mitochondria. Cell Rep. 42, 111899 (2023).

    CAS  PubMed  Google Scholar 

  160. Carreras-Sureda, A. et al. Non-canonical function of IRE1alpha determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat. Cell Biol. 21, 755–767 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Takeda, K. et al. MITOL prevents ER stress-induced apoptosis by IRE1alpha ubiquitylation at ER–mitochondria contact sites. EMBO J. 38, e100999 (2019).

    PubMed  PubMed Central  Google Scholar 

  162. Burkewitz, K. et al. Atf-6 regulates lifespan through ER–mitochondrial calcium homeostasis. Cell Rep. 32, 108125 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang, Z. et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 17, 1841–1855 (2021).

    CAS  PubMed  Google Scholar 

  164. Burton, T. D., Fedele, A. O., Xie, J., Sandeman, L. Y. & Proud, C. G. The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4. J. Biol. Chem. 295, 7418–7430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Torres, S. E. et al. Ceapins block the unfolded protein response sensor ATF6alpha by inducing a neomorphic inter-organelle tether. eLife 8, e46595 (2019).

    PubMed  PubMed Central  Google Scholar 

  166. Jarc, E. & Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med. 92, 435–452 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Garcia, G. et al. Lipid homeostasis is essential for a maximal ER stress response. eLife 12, e83884 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. van Vliet, A. R. et al. The ER stress sensor PERK coordinates ER–plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Mol. Cell 65, 885–899.e6 (2017).

    PubMed  Google Scholar 

  169. Urra, H. et al. IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell Biol. 20, 942–953 (2018).

    CAS  PubMed  Google Scholar 

  170. Ishiwata-Kimata, Y., Yamamoto, Y. H., Takizawa, K., Kohno, K. & Kimata, Y. F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1. Cell Struct. Funct. 38, 135–143 (2013).

    CAS  PubMed  Google Scholar 

  171. Maillo, C. et al. Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat. Cell Biol. 19, 94–105 (2017).

    CAS  PubMed  Google Scholar 

  172. Zhu, B. et al. A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms. Cell Metab. 25, 1305–1319.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bu, Y. et al. A PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat. Cell Biol. 20, 104–115 (2018).

    CAS  PubMed  Google Scholar 

  174. Gao, L. et al. ER stress activation impairs the expression of circadian clock and clock-controlled genes in NIH3T3 cells via an ATF4-dependent mechanism. Cell Signal. 57, 89–101 (2019).

    CAS  PubMed  Google Scholar 

  175. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Higuchi-Sanabria, R. et al. Divergent nodes of non-autonomous UPR(ER) signaling through serotonergic and dopaminergic neurons. Cell Rep. 33, 108489 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ozbey, N. P. et al. Tyramine acts downstream of neuronal XBP-1s to coordinate inter-tissue UPR(ER) activation and behavior in C. elegans. Dev. Cell 55, 754–770.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Metcalf, M. G. et al. Cell non-autonomous control of autophagy and metabolism by glial cells. iScience 27, 109354 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Levi-Ferber, M. et al. Neuronal regulated ire-1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. eLife 10, e65644. (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Dudkevich, R. et al. Neuronal IRE-1 coordinates an organism-wide cold stress response by regulating fat metabolism. Cell Rep. 41, 111739 (2022).

    CAS  PubMed  Google Scholar 

  181. Williams, K. W. et al. Xbp1s in POMC neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. McNally, B. D. et al. Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nat. Commun. 13, 1748 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hoozemans, J. J., van Haastert, E. S., Nijholt, D. A., Rozemuller, A. J. & Scheper, W. Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener. Dis. 10, 212–215 (2012).

    CAS  PubMed  Google Scholar 

  184. Carnemolla, A. et al. Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J. Biol. Chem. 284, 18167–18173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gami-Patel, P. et al. Unfolded protein response activation in C9orf72 frontotemporal dementia is associated with dipeptide pathology and granulovacuolar degeneration in granule cells. Brain Pathol. 31, 163–173 (2021).

    CAS  PubMed  Google Scholar 

  186. Ilieva, E. V. et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130, 3111–3123 (2007).

    PubMed  Google Scholar 

  187. Baek, J. H. et al. Unfolded protein response is activated in Lewy body dementias. Neuropathol. Appl. Neurobiol. 42, 352–365 (2016).

    CAS  PubMed  Google Scholar 

  188. Credle, J. J. et al. alpha-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol. Dis. 76, 112–125 (2015).

    CAS  PubMed  Google Scholar 

  189. Walker, A. K. et al. ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS ONE 8, e81170 (2013).

    PubMed  PubMed Central  Google Scholar 

  190. Farg, M. A. et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol. Aging 33, 2855–2868 (2012).

    CAS  PubMed  Google Scholar 

  191. Leitman, J., Ulrich Hartl, F. & Lederkremer, G. Z. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat. Commun. 4, 2753 (2013).

    PubMed  Google Scholar 

  192. Medinas, D. B. et al. Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 115, 8209–8214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Haakonsen, D. L. et al. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 626, 874–880 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Aviner, R. et al. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington’s disease. Nat. Cell Biol. 26, 892–902 (2024). This paper identifies a new mechanism underlying huntingtin-induced proteotoxicity involving stress-responsive huntingtin translation, ribosome collisions and ensuing ribotoxicity.

    CAS  PubMed  Google Scholar 

  195. Cabral-Miranda, F. et al. Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging. EMBO J. 41, e111952 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hyrskyluoto, A. et al. Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1α. Hum. Mol. Genet. 23, 5928–5939 (2014).

    CAS  PubMed  Google Scholar 

  197. Yan, C. et al. IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson’s disease. Cell Death Dis. 10, 800 (2019).

    PubMed  PubMed Central  Google Scholar 

  198. Duran-Aniotz, C. et al. IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol. 134, 489–506 (2017).

    CAS  PubMed  Google Scholar 

  199. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Vidal, R. L. et al. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 21, 2245–2262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Valdes, P. et al. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc. Natl Acad. Sci. USA 111, 6804–6809 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, Z. et al. Sustained overexpression of spliced X-box-binding protein-1 in neurons leads to spontaneous seizures and sudden death in mice. Commun. Biol. 6, 252 (2023).

    PubMed  PubMed Central  Google Scholar 

  203. Longo, F. et al. Cell-type-specific disruption of PERK-eIF2alpha signaling in dopaminergic neurons alters motor and cognitive function. Mol. Psychiatry 26, 6427–6450 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang, L., Popko, B. & Roos, R. P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 20, 1008–1015 (2011).

    CAS  PubMed  Google Scholar 

  205. Wang, L., Popko, B. & Roos, R. P. An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum. Mol. Genet. 23, 2629–2638 (2014).

    CAS  PubMed  Google Scholar 

  206. Ghadge, G. D. et al. Knockdown of GADD34 in neonatal mutant SOD1 mice ameliorates ALS. Neurobiol. Dis. 136, 104702 (2020).

    CAS  PubMed  Google Scholar 

  207. Wang, L., Popko, B., Tixier, E. & Roos, R. P. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol. Dis. 71, 317–324 (2014).

    CAS  PubMed  Google Scholar 

  208. Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Jiang, H. Q. et al. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 277, 132–138 (2014).

    CAS  PubMed  Google Scholar 

  210. Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  211. Colla, E. et al. Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J. Neurosci. 32, 3306–3320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Silva, R. M. et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95, 974–986 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Ganz, J. et al. A novel specific PERK activator reduces toxicity and extends survival in Huntington’s disease models. Sci. Rep. 10, 6875 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130, 633–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Mercado, G. et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis. 112, 136–148 (2018).

    CAS  PubMed  Google Scholar 

  216. Espina, M. et al. The GRP78–PERK axis contributes to memory and synaptic impairments in Huntington’s disease R6/1 mice. Neurobiol. Dis. 184, 106225 (2023).

    CAS  PubMed  Google Scholar 

  217. Ma, T. et al. Suppression of eIF2alpha kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat. Neurosci. 16, 1299–1305 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Sen, T., Gupta, R., Kaiser, H. & Sen, N. Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury. J. Neurosci. 37, 5900–5911 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013).

    CAS  PubMed  Google Scholar 

  220. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    PubMed  PubMed Central  Google Scholar 

  221. Sidrauski, C. et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 4, e07314 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. Halliday, M. et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6, e1672 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zyryanova, A. F. et al. ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B. Mol. Cell 81, 88–103.e6 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Wong, Y. L. et al. The small molecule ISRIB rescues the stability and activity of vanishing white matter disease eIF2B mutant complexes. eLife 7, e32733 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. Wong, Y. L. et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 8, e42940 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Zhang, W. et al. Recapitulating and reversing human brain ribosomopathy defects via the maladaptive integrated stress response. Sci. Adv. 10, eadk1034 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Halliday, M. et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain 140, 1768–1783 (2017).

    PubMed  PubMed Central  Google Scholar 

  228. Hamadjida, A., Nuara, S. G., Gourdon, J. C. & Huot, P. Trazodone alleviates both dyskinesia and psychosis in the parkinsonian marmoset model of Parkinson’s disease. J. Neural Transm. 125, 1355–1360 (2018).

    CAS  PubMed  Google Scholar 

  229. Krukowski, K. et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 9, e62048 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chou, A. et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc. Natl Acad. Sci. USA 114, E6420–E6426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hosoi, T., Kakimoto, M., Tanaka, K., Nomura, J. & Ozawa, K. Unique pharmacological property of ISRIB in inhibition of Abeta-induced neuronal cell death. J. Pharmacol. Sci. 131, 292–295 (2016).

    CAS  PubMed  Google Scholar 

  232. Zhu, P. J. et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science 366, 843–849 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Bugallo, R. et al. Fine tuning of the unfolded protein response by ISRIB improves neuronal survival in a model of amyotrophic lateral sclerosis. Cell Death Dis. 11, 397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Marlin, E. et al. Pharmacological inhibition of the integrated stress response accelerates disease progression in an amyotrophic lateral sclerosis mouse model. Br. J. Pharmacol. 181, 495–508 (2024).

    CAS  PubMed  Google Scholar 

  235. Egawa, N. et al. The endoplasmic reticulum stress sensor, ATF6alpha, protects against neurotoxin-induced dopaminergic neuronal death. J. Biol. Chem. 286, 7947–7957 (2011).

    CAS  PubMed  Google Scholar 

  236. Hashida, K. et al. ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS ONE 7, e47950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Fernandez-Fernandez, M. R., Ferrer, I. & Lucas, J. J. Impaired ATF6alpha processing, decreased Rheb and neuronal cell cycle re-entry in Huntington’s disease. Neurobiol. Dis. 41, 23–32 (2011).

    CAS  PubMed  Google Scholar 

  238. Naranjo, J. R. et al. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J. Clin. Invest. 126, 627–638 (2016).

    PubMed  PubMed Central  Google Scholar 

  239. Duran-Aniotz, C. et al. The unfolded protein response transcription factor XBP1s ameliorates Alzheimer’s disease by improving synaptic function and proteostasis. Mol. Ther. 31, 2240–2256 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Vidal, R. L. et al. Enforced dimerization between XBP1s and ATF6f enhances the protective effects of the UPR in models of neurodegeneration. Mol. Ther. 29, 1862–1882 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Liu, P. et al. The UPR maintains proteostasis and the viability and function of hippocampal neurons in adult mice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241411542 (2023).

  242. Shen, Y. et al. Activation of the ATF6 (activating transcription factor 6) signaling pathway in neurons improves outcome after cardiac arrest in mice. J. Am. Heart Assoc. 10, e020216 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang, M. et al. Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABAA receptors. Cell Biosci. 12, 48 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Kawasaki, N., Asada, R., Saito, A., Kanemoto, S. & Imaizumi, K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci. Rep. 2, 799 (2012).

    PubMed  PubMed Central  Google Scholar 

  245. Shan, B. et al. The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 18, 519–529 (2017).

    CAS  PubMed  Google Scholar 

  246. Madhavan, A. et al. Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat. Commun. 13, 608 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  248. Usui, M. et al. Atf6alpha-null mice are glucose intolerant due to pancreatic beta-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61, 1118–1128 (2012).

    CAS  PubMed  Google Scholar 

  249. Butler, A. E. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    CAS  PubMed  Google Scholar 

  250. Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118, 3378–3389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhou, A. X. & Tabas, I. The UPR in atherosclerosis. Semin. Immunopathol. 35, 321–332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhou, J., Lhotak, S., Hilditch, B. A. & Austin, R. C. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821 (2005).

    CAS  PubMed  Google Scholar 

  253. Zeng, L. et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl Acad. Sci. USA 106, 8326–8331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Tufanli, O. et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl Acad. Sci. USA 114, E1395–E1404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Thorp, E. et al. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 9, 474–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Hofmann, C. et al. ATF6 protects against protein misfolding during cardiac hypertrophy. J. Mol. Cell. Cardiol. 189, 12–24 (2024).

    CAS  PubMed  Google Scholar 

  258. Azfer, A., Niu, J., Rogers, L. M., Adamski, F. M. & Kolattukudy, P. E. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am. J. Physiol. Heart Circ. Physiol. 291, H1411–H1420 (2006).

    CAS  PubMed  Google Scholar 

  259. Szegezdi, E. et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem. Biophys. Res. Commun. 349, 1406–1411 (2006).

    CAS  PubMed  Google Scholar 

  260. Duan, Q. et al. MicroRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. J. Transl. Med. 13, 363 (2015).

    PubMed  PubMed Central  Google Scholar 

  261. Ortega, A. et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS ONE 9, e107635 (2014).

    PubMed  PubMed Central  Google Scholar 

  262. Ni, L. et al. beta-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS ONE 6, e27294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Fu, H. Y. et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 122, 361–369 (2010).

    CAS  PubMed  Google Scholar 

  264. Steiger, D. et al. The serine/threonine-protein kinase/endoribonuclease IRE1alpha protects the heart against pressure overload-induced heart failure. J. Biol. Chem. 293, 9652–9661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Jin, B. et al. Activation of XBP1 but not ATF6 rescues heart failure induced by persistent ER stress in medaka fish. Life Sci. Alliance 6, e202201771 (2023).

  268. Liu, X. et al. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 64, 738–744 (2014).

    CAS  PubMed  Google Scholar 

  269. Blackwood, E. A. et al. ATF6 regulates cardiac hypertrophy by transcriptional induction of the mTORC1 activator, Rheb. Circ. Res. 124, 79–93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Blackwood, E. A. et al. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat. Commun. 10, 187 (2019).

    PubMed  PubMed Central  Google Scholar 

  271. Horiuchi, K., Tohmonda, T. & Morioka, H. The unfolded protein response in skeletal development and homeostasis. Cell. Mol. Life Sci. 73, 2851–2869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Tohmonda, T. et al. The IRE1alpha-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep. 12, 451–457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Guo, F. et al. ATF6a, a Runx2-activable transcription factor, is a new regulator of chondrocyte hypertrophy. J. Cell Sci. 129, 717–728 (2016).

    CAS  PubMed  Google Scholar 

  274. Guo, F. J. et al. XBP1S, a BMP2-inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor. J. Cell. Mol. Med. 18, 1157–1171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Wei, J., Sheng, X., Feng, D., McGrath, B. & Cavener, D. R. PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J. Cell. Physiol. 217, 693–707 (2008).

    CAS  PubMed  Google Scholar 

  276. Saito, A. et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J. Biol. Chem. 286, 4809–4818 (2011).

    CAS  PubMed  Google Scholar 

  277. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  278. Liu, J. et al. A functional haplotype in EIF2AK3, an ER stress sensor, is associated with lower bone mineral density. J. Bone Min. Res. 27, 331–341 (2012).

    CAS  Google Scholar 

  279. Symoens, S. et al. Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J. Rare Dis. 8, 154 (2013).

    PubMed  PubMed Central  Google Scholar 

  280. Tan, L., Register, T. C. & Yammani, R. R. Age-related decline in expression of molecular chaperones induces endoplasmic reticulum stress and chondrocyte apoptosis in articular cartilage. Aging Dis. 11, 1091–1102 (2020).

    PubMed  PubMed Central  Google Scholar 

  281. Tohmonda, T. et al. IRE1alpha/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J. Clin. Invest. 125, 3269–3279 (2015).

    PubMed  PubMed Central  Google Scholar 

  282. Raimondi, L. et al. Multiple myeloma-derived extracellular vesicles induce osteoclastogenesis through the activation of the XBP1/IRE1α axis. Cancers (Basel) 12, 2167 (2020).

    CAS  PubMed  Google Scholar 

  283. Cao, H. et al. Activating transcription factor 4 regulates osteoclast differentiation in mice. J. Clin. Invest. 120, 2755–2766 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Guo, J. et al. PERK controls bone homeostasis through the regulation of osteoclast differentiation and function. Cell Death Dis. 11, 847 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Hamamura, K., Tanjung, N. & Yokota, H. Suppression of osteoclastogenesis through phosphorylation of eukaryotic translation initiation factor 2 alpha. J. Bone Min. Metab. 31, 618–628 (2013).

    CAS  Google Scholar 

  286. He, L. et al. Osteoporosis regulation by salubrinal through eIF2alpha mediated differentiation of osteoclast and osteoblast. Cell Signal. 25, 552–560 (2013).

    CAS  PubMed  Google Scholar 

  287. Li, J. et al. eIF2alpha signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice. Cell Death Dis. 10, 921 (2019).

    CAS  PubMed Central  Google Scholar 

  288. Takigawa, S. et al. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice. J. Pharmacol. Sci. 132, 154–161 (2016).

    CAS  PubMed  Google Scholar 

  289. Li, J. et al. Role of endoplasmic reticulum stress in disuse osteoporosis. Bone 97, 2–14 (2017).

    CAS  PubMed  Google Scholar 

  290. Blais, A. et al. An initial blueprint for myogenic differentiation. Genes Dev. 19, 553–569 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. He, S. et al. IRE1α regulates skeletal muscle regeneration through myostatin mRNA decay. J. Clin. Invest. 131, e143737 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Xiong, G. et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. eLife 6, e22871 (2017).

    PubMed  PubMed Central  Google Scholar 

  293. Pagliara, V. et al. Myogenesis in C2C12 cells requires phosphorylation of ATF6α by p38 MAPK. Biomedicines 11, 1457 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. 13, 160–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Pereira, B. C. et al. Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles. Life Sci. 145, 144–151 (2016).

    CAS  PubMed  Google Scholar 

  296. Kim, H. J. et al. Endoplasmic reticulum stress markers and ubiquitin–proteasome pathway activity in response to a 200-km run. Med. Sci. Sports Exerc. 43, 18–25 (2011).

    CAS  PubMed  Google Scholar 

  297. Miyake, M. et al. Ligand-induced rapid skeletal muscle atrophy in HSA–Fv2E–PERK transgenic mice. PLoS ONE 12, e0179955 (2017).

    PubMed  PubMed Central  Google Scholar 

  298. Miyake, M. et al. Skeletal muscle-specific eukaryotic translation initiation factor 2alpha phosphorylation controls amino acid metabolism and fibroblast growth factor 21-mediated non-cell-autonomous energy metabolism. FASEB J. 30, 798–812 (2016).

    CAS  PubMed  Google Scholar 

  299. Hart, C. R. et al. Attenuated activation of the unfolded protein response following exercise in skeletal muscle of older adults. Aging 11, 7587–7604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Barreiro, E., Salazar-Degracia, A., Sancho-Munoz, A. & Gea, J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J. Cell Physiol. 234, 11315–11329 (2019).

    CAS  PubMed  Google Scholar 

  301. Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).

    CAS  PubMed  Google Scholar 

  302. Wang, M. & Kaufman, R. J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581–597 (2014).

    CAS  PubMed  Google Scholar 

  303. Cubillos-Ruiz, J. R., Bettigole, S. E. & Glimcher, L. H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168, 692–706 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Namba, T. et al. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1alpha/XBP1 pathway. Oncotarget 6, 19990–20001 (2015).

    PubMed  PubMed Central  Google Scholar 

  305. Hromas, R. et al. BRCA1 mediates protein homeostasis through the ubiquitination of PERK and IRE1. iScience 25, 105626 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Harnoss, J. M. et al. IRE1alpha disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing ER stress adaptation and remodeling the tumor microenvironment. Cancer Res. 80, 2368–2379 (2020). This paper shows that kinase-based small-molecule inhibition of IRE1α inhibits growth of mouse-xenografted and patient-derived malignant multiple myeloma cells without significant toxicity towards normal cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Harnoss, J. M. et al. Disruption of IRE1alpha through its kinase domain attenuates multiple myeloma. Proc. Natl Acad. Sci. USA 116, 16420–16429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Dufey, E. et al. Genotoxic stress triggers the activation of IRE1alpha-dependent RNA decay to modulate the DNA damage response. Nat. Commun. 11, 2401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Blazanin, N. et al. ER stress and distinct outputs of the IRE1alpha RNase control proliferation and senescence in response to oncogenic Ras. Proc. Natl Acad. Sci. USA 114, 9900–9905 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Lv, X. et al. Modulation of the proteostasis network promotes tumor resistance to oncogenic KRAS inhibitors. Science 381, eabn4180 (2023). This paper demonstrates that perturbation of IRE1 overcomes acquired resistance to inhibitors of KRAS-G12C in pancreatic and non-small-cell lung cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Zhao, N. et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J. Clin. Invest. 128, 1283–1299 (2018).

    PubMed  PubMed Central  Google Scholar 

  312. Xie, H. et al. IRE1alpha RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers. J. Clin. Invest. 128, 1300–1316 (2018).

    PubMed  PubMed Central  Google Scholar 

  313. Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. 10, eaar2036 (2018).

    PubMed  PubMed Central  Google Scholar 

  314. Sheng, X. et al. IRE1alpha-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun. 10, 323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Liu, C. Y. et al. ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol. Oncol. 12, 1706–1717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Benedetti, R. et al. ATF6 prevents DNA damage and cell death in colon cancer cells undergoing ER stress. Cell Death Discov. 8, 295 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Chowdhury, S. P. et al. Baseline unfolded protein response signaling adjusts the timing of the mammalian cell cycle. Mol. Biol. Cell 35, br12 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Li, X. X. et al. Knockdown of IRE1alpha inhibits colonic tumorigenesis through decreasing beta-catenin and IRE1alpha targeting suppresses colon cancer cells. Oncogene 36, 6738–6746 (2017).

    CAS  PubMed  Google Scholar 

  319. Wu, Y. et al. Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice. Hepatology 68, 533–546 (2018).

    CAS  PubMed  Google Scholar 

  320. Coleman, O. I. et al. Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis. Gastroenterology 155, 1539–1552.e12 (2018). This paper demonstrates that ectopic expression of ATF6N in intestinal epithelial cells facilitates gut infection, leading to local inflammation, dysbiosis and colorectal adenoma formation.

    CAS  PubMed  Google Scholar 

  321. Rodvold, J. J. et al. ATF6 promotes colorectal cancer growth and stemness by regulating the Wnt pathway. Cancer Res. Commun. 4, 2734–2755 (2024). This paper reveals a cell-autonomous role for ATF6 in facilitating oncogenic WNY and MYC signalling to promote colorectal cancer cell stemness and growth, and shows that ATF6 disruption in colorectal cancer organoids induces multilineage differentiation and arrests growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508, 103–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Xia, Z. et al. Hypoxic ER stress suppresses beta-catenin expression and promotes cooperation between the transcription factors XBP1 and HIF1alpha for cell survival. J. Biol. Chem. 294, 13811–13821 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Ben-Harosh, Y., Anosov, M., Salem, H., Yatchenko, Y. & Birk, R. Pancreatic stellate cell activation is regulated by fatty acids and ER stress. Exp. Cell Res. 359, 76–85 (2017).

    CAS  PubMed  Google Scholar 

  325. Yang, Z. et al. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 34, 2018–2035.e8 (2022).

    CAS  PubMed  Google Scholar 

  326. Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Tcyganov, E. N. et al. Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. J. Clin. Invest. 131, e145971 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Cuevas, E. P. et al. LOXL2 drives epithelial–mesenchymal transition via activation of IRE1–XBP1 signalling pathway. Sci. Rep. 7, 44988 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Xia, T. et al. XBP1 induces MMP-9 expression to promote proliferation and invasion in human esophageal squamous cell carcinoma. Am. J. Cancer Res. 6, 2031–2040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Dey, S. et al. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J. Clin. Invest. 125, 2592–2608 (2015).

    PubMed  PubMed Central  Google Scholar 

  331. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science360, eaao4908 (2018).

    PubMed  PubMed Central  Google Scholar 

  332. Gao, Q. et al. IRE1alpha-targeting downregulates ABC transporters and overcomes drug resistance of colon cancer cells. Cancer Lett. 476, 67–74 (2020).

    CAS  PubMed  Google Scholar 

  333. Del Vecchio, C. A. et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12, e1001945 (2014).

    PubMed  PubMed Central  Google Scholar 

  334. Sustic, T. et al. A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers. Genome Med. 10, 90 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Ma, X. H. et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Invest. 124, 1406–1417 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Xu, L. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell https://doi.org/10.1016/j.cell.2024.09.032 (2024).

  337. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  338. Kimmig, P. et al. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. eLife 1, e00048 (2012).

    PubMed  PubMed Central  Google Scholar 

  339. Marciniak, S. J., Chambers, J. E. & Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov. 21, 115–140 (2022). This study is a comprehensive review on the different pharmacological modalities to target ER stress and the UPR.

    CAS  PubMed  Google Scholar 

  340. Rimawi, M. F. et al. Early efficacy evaluation of ORIN1001, a first in class IRE1 alpha inhibitor, in advanced solid tumors. J. Clin. Oncol. 41, 1092–1092 (2023).

    Google Scholar 

Download references

Acknowledgements

J.M.H. is supported by the German Cancer Aid.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed similarly to writing and editing the manuscript.

Corresponding authors

Correspondence to Peter Walter or Avi Ashkenazi.

Ethics declarations

Competing interests

D.A.-A. and P.W. are employees of Altos Labs, Inc. A.A. is employee of Genentech, Inc.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ABC transporters

Superfamily of proteins that transport substances across biological membranes.

Antigen cross-presentation

A cellular process in which antigen-presenting cells acquire and process antigenic molecules and present them to effector cells of the immune system.

Arterial intima

Innermost region of the artery, encompassing the endothelium lining the arterial walls at the arterial lumen.

Cis-regulatory elements

Non-coding DNA sequences that regulate transcription of adjacent DNA.

DNA damage–repair response

(DDR). A homeostatic signalling network comprising sensors of genome damage and effectors in charge of genome repair.

ER–mitochondria contact sites

Dynamic multiprotein structures forming physical contacts between the endoplasmic reticulum and mitochondria.

Goblet cells

Specialized epithelial cells that reside in the mucosal layer of the intestinal tract and the airways and secrete mucus.

Heat shock response

A homeostatic signalling network that detects protein-folding deviations in the cytosol and induces gene-expression programmes to augment chaperones to aid in protein refolding and damage clearance.

Hypothalamic pro-opiomelanocortin neurons

Neurons that regulate metabolism and energy expenditure.

Hedgehog ligands and receptors

Interacting proteins governing the Hedgehog signalling pathway: an important developmental control pathway in animals.

Inositol triphosphate receptors

Calcium channels in the endoplasmic reticulum (ER) membrane that release calcium from the ER lumen.

Integrated stress response

A homeostatic signalling network that detects and reacts to different stresses and reprogrammes the transcriptome and proteome to leverage the biosynthetic capacity of the cell with stress levels.

Ischaemia–reperfusion injury

Injury that occurs when blood flow is restored after a period of ischaemia (restriction of blood flow to a tissue).

Kar2 (also known as BiP)

The most abundant Hsp70-type chaperone in the lumen of the endoplasmic reticulum of yeast (Kar2) and animals (BiP).

KRAS

KRAS (and HRAS) are cancer-causing genes, or oncogenes, often activated by mutation in cancer and encoding proteins that transduce growth signals.

Lamin A

Structural protein and a major component of the nuclear lamina: a fibrillar meshwork providing mechanical support to the nucleus of the cell.

Muscle satellite-cell

Skeletal muscle stem cells responsible for tissue growth, repair and regeneration.

Myogenic regulatory factors

A family of transcription factors driving gene expression programmes behind developmental and regenerative muscle differentiation.

Osteoclastogenesis

A generative process giving rise to osteoclasts — specialized cells that break down bone tissue to remodel it.

Osteopenia

A condition characterized by lower bone density, but less severe than osteoporosis.

Ribosomopathy

A pathological condition resulting from defects in ribosome biogenesis or in the structure or function of ribosomes.

Sec61 translocon

A channel controlling the co-translational entry of nascent polypeptides destined for the secretory pathway into the lumen or across the membrane of the endoplasmic reticulum.

Signal recognition particle

A ribonucleoprotein complex that co-translationally recognizes a signal peptide in some proteins and targets the translating ribosome to the endoplasmic reticulum membrane.

TNBC

Triple-negative breast cancer is an aggressive tumour characterized by low or absent oestrogen, progesterone and human epidermal growth factor 2 (HER2) receptors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Alvear, D., Harnoss, J.M., Walter, P. et al. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 26, 193–212 (2025). https://doi.org/10.1038/s41580-024-00794-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00794-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer