In yeast, five gene products are required for telomerase activity in vivo: Est2p (the catalytic reverse transcriptase subunit), TLC1 (the template RNA), Est1p, Est3p and Cdc13p. Mutations in any of these five genes lead to progressive telomere shortening, the so-called ever shorter telomeres (EST) phenotype, followed by cell death. CDC13 is the only essential gene among the EST genes. Est2p and TLC1 form the catalytic core of telomerase, while Est1p, Est3p and Cdc13p which are dispensable for in vitro telomerase catalytic activity, play regulatory roles (6, 8, 10, 14, 16 and references therein). Cdc13p, a single stranded DNA binding protein required for telomere maintenance and elongation, binds to Est1p and this interaction is necessary for recruiting telomerase to the chromosomal ends. Est1p, Est2p and Est3p all bind to the TLC1 RNA template and Est1p also binds to 3' ends of single stranded DNA. Est1p forms a stable complex with TLC1 in the absence of Est2p or Est3p while association of Est3p with the enzyme requires an intact catalytic core. Est1p and Est3p are stable components of the telomerase holoenzyme (14).TLC1 is the template for the synthesis of the single stranded chromosome end synthesis; it also provides a scaffold for the assembly of the telomerase ribonucleoprotein complex and it modulates enzyme activity (7). TLC1 was identified from a screen for telomeric silencing defects (1). In S. cerevisiae, the TLC1 RNA is a polyadenylated, 1.3 kb transcript produced by RNA polymerase II. An increase in the amount of polyA+ TLC1 transcript is observed between the G1 and S phases of the cell cycle, suggesting that TLC1 RNA levels are regulated in a cell-cycle dependent manner (8).Analysis of the secondary structure of the TLC1 RNA has provided insights into the RNA-protein interactions that are necessary for the assembly and activity of the telomerase complex. A base-paired element immediately adjacent to the template, provides a template boundary to terminate each cycle of reverse transcription (5) and three stem-loop structures provide protein binding sites for the Est2p, Est1p telomerase subunits and for the Ku heterodimer (Yku70p-Yku80p) (9, 12, 13). Binding of Est1p with TLC1 is proposed to provide a bridge between the catalytic Est2p and the telomere-bound Cdc13p, thereby mediating an essential step in telomere replication (9, 12, 13). Interaction of TLC1 RNA with the Ku dimer promotes the addition of telomeres to broken chromosome ends, thereby repairing damaged DNA by capping the broken end with telomeric DNA (13, 15). The TLC1 RNA also contains an Sm binding site near its 3' end and is bound by the heteroheptameric Sm ring complex, which also binds to many of the splicesomal snRNAs and is encoded by SMB1, SMD1, SMD2, SMD3, SME1, SMX3 and SMX2 (18). It has been proposed that the Sm proteins play a role in the intracellular transport, assembly and maturation of the telomerase RNP complex. Approximately 40% of the length of the TLC1 RNA, including the template region and the Est2p and Est1p binding sites, is required for telomerase function (19).In humans, telomere length is linked to aging and cancer: in human germline cells telomeres are long, whereas in cells of somatic tissues, telomerase activity is absent and the telomeres are short. Upon sufficient shortening, the somatic cells stop dividing and become senescent. Inappropriate telomerase activity is detected in most malignant tumors, and the genes required for telomerase activity are potential targets for cancer therapy (4, 8).  Human orthologs for four of the telomerase subunits are known. Est2p, the telomerase reverse transcriptase catalytic enzyme, is similar to  
                The S. cerevisiae Reference Genome sequence is derived from laboratory strain
                S288C. Download DNA or protein sequence, view genomic context and
                coordinates. Click "Sequence Details" to view all sequence information for this locus, including that
                for other strains.
             
                            BLASTN | 
                        
                            
                            Design Primers | 
                        
                            
                            Restriction Fragment Map | 
                        
                            
                            Restriction Fragment Sizes  
		Curated mutant alleles for the specified gene, listed alphabetically. Click on the allele name to open the allele page. Click "SGD search" to view all alleles in search results.                     
                 View all TLC1 alleles in SGD search
 
                GO Annotations consist of four mandatory components: a gene product, a term from one of the three
                Gene Ontology (GO) controlled vocabularies
                (Molecular Function,
                Biological Process, and
                Cellular Component), a reference, and an
                evidence code. SGD has manually curated and high-throughput GO Annotations, both derived from the
                literature, as well as computational, or predicted, annotations. Click "Gene Ontology Details" to view
                all GO information and evidence for this locus as well as biological processes it shares with other genes.
             
		     Macromolecular complex annotations are imported from the Complex Portal. These annotations have been derived from physical molecular interaction evidence extracted from the literature and cross-referenced in the entry, or by curator inference from information on homologs in closely related species or by inference from scientific background.
	         
                Phenotype annotations for a gene are curated single mutant phenotypes that require an observable
                (e.g., "cell shape"), a qualifier (e.g., "abnormal"), a mutant type (e.g., null), strain background,
                and a reference. In addition, annotations are classified as classical genetics or high-throughput
                (e.g., large scale survey, systematic mutation set). Whenever possible, allele information and
                additional details are provided. Click "Phenotype Details" to view all phenotype annotations and
                evidence for this locus as well as phenotypes it shares with other genes.
             
                Interaction annotations are curated by BioGRID and include physical
                or genetic interactions observed
                between at least two genes. An interaction annotation is composed of the interaction type, name of the
                interactor, assay type (e.g., Two-Hybrid), annotation type (e.g., manual or high-throughput), and a
                reference, as well as other experimental details. Click "Interaction Details" to view all interaction
                annotations and evidence for this locus, including an interaction visualization.
             523 total interactions for 434 unique genes 
                The number of putative Regulators (genes that regulate it) and Targets (genes it regulates) for the
                given locus, based on experimental evidence. This evidence includes data generated through
                high-throughput techniques. Click "Regulation Details" to view all regulation annotations, shared GO
                enrichment among regulation Targets, and a regulator/target diagram for the locus.
             No regulation data available. 
                A summary of the locus, written by SGD Biocurators following a thorough review of the literature. Links
                to gene names and curated GO terms are included within the Summary Paragraphs.
             Last Updated: 2007-06-07 
                All manually curated literature for the specified gene, organized into topics according to their
                relevance to the gene (Primary Literature, Additional Literature, or Review). Click "Literature Details"
                to view all literature information for this locus, including shared literature between genes.
            TLC1 / YNCB0010W Overview
        
        
        
                
                
                    
                    
 
		       
                    
                Sequence
            
            
	
        Analyze Sequence
                    S288C only
S288C vs. other species
  
                        
                        
                    Alleles
                
                
	Gene Ontology
            
            
        Molecular Function
                    
                        
                        
                            
                                
Biological Process
                    
                        
                        
                            
                                
Cellular Component
                    
                        
                        
                            
                                
Complex
		
                
	
	
    Phenotype
            
            
        
        Classical Genetics
                    
                        
                            
                        
Large-scale Survey
                        
                            Interaction
            
            
        Physical Interactions
                    
                        
                            
Genetic Interactions
                    
                        
                            
Regulation
            
            
	
        Summary Paragraph
            
            
        Literature
            
            
        
    Resources