Describing Scientific Datasets:
The HCLS Community Profile
1
Michel Dumontier, Ph.D.
Associate Professor of Medicine (Biomedical Informatics)
Stanford University
World Wide Web Consortium (W3C)
• The W3C is the main international standards
organization for the World Wide Web.
• The W3C is made up of over 400 member
organizations for the purpose of working
together in the development of standards for
the World Wide Web.
@micheldumontier::CEDAR:Jan 20152
The Semantic Web
is the new global web of knowledge
3 @micheldumontier::CEDAR:Jan 2015
It involves standards for publishing, sharing and querying
facts, expert knowledge and services
It is a scalable approach to the
discovery of independently formulated
and distributed knowledge
Resource Description Framework
• It’s a language to represent knowledge
– Logic-based formalism -> automated reasoning
– graph-like properties -> data analysis
• Good for
– Describing in terms of type, attributes, relations
– Integrating data from different sources
– Sharing the data (W3C standard)
– Reusing what is available, developing what you need,
and contributing back to the web of data.
@micheldumontier::CEDAR:Jan 20154
@micheldumontier::CEDAR:Jan 2015
drugbank:DB00586
drugbank_vocabulary:Drug
rdf:type
drugbank:290
drugbank_vocabulary:Target
rdf:type
drugbank_vocabulary:targets
rdfs:label
Prostaglandin G/H synthase 2
[drugbank_target:290]
rdfs:label
Diclofenac [drugbank:DB00586]
5
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX drugbank: <http://bio2rdf.org/drugbank:>
PREFIX drugbank_vocabulary: <http://bio2rdf.org/drugbank_vocabulary:>
The linked data network expands
with every reference
@micheldumontier::CEDAR:Jan 2015
drugbank:DB00586
pharmgkb_vocabulary:Drug
rdf:type
rdfs:label
diclofenac [drugbank:DB00586]
pharmgkb:PA449293
drugbank_vocabulary:Drug
pharmgkb_vocabulary:x-drugbank
diclofenac [pharmgkb:PA449293]
rdfs:label
DrugBank
PharmGKB
6
We are building a massive network of linked open data
7
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/”
@micheldumontier::CEDAR:Jan 2015
Linked Data for the Life Sciences
• Free and open source
• Leverages Semantic Web standards
• 10B+ interlinked statements from 30+
conventional and high value datasets
• Partnerships with EBI, SIB, NCBI, DBCLS, NCBO,
OpenPHACTS, and many others
chemicals/drugs/formulations,
genomes/genes/proteins, domains
Interactions, complexes & pathways
animal models and phenotypes
Disease, genetic markers, treatments
Terminologies & publications
@micheldumontier::CEDAR:Jan 20158
Alison Callahan, Jose Cruz-Toledo, Peter Ansell, Michel Dumontier:
Bio2RDF Release 2: Improved Coverage, Interoperability and
Provenance of Life Science Linked Data. ESWC 2013: 200-212
Semantic Web
for Health Care and Life Sciences Interest Group (HCLS)
• Mission: to develop, advocate for, and support the use of Semantic
Web technologies across health care, life sciences, clinical research and
translational medicine.
• Since 2001. 86 members from 29 organizations.
• Chairs: Michel Dumontier and Charlie Mead
• Objectives:
– Develop high level and architectural vocabularies.
– Implement proof-of-concept demonstrations and industry-ready
code.
– Document guidelines to accelerate the adoption of the technology.
– Disseminate information about the group's work at government,
industry, academic events and by participating in community
initiatives.
@micheldumontier::CEDAR:Jan 20159
Challenge: Working with Web Data
• Often have inadequate descriptions so we don’t know
what they are about or how they were constructed.
• datasets change over time, but often don’t come with
versioning information
• may have been constructed using other data, but it’s not
clear which version of data was used or whether these
were modified
• Data may be available in a variety of formats
• There may be multiple copies of data from different
providers, but it’s unclear if they are exact copies or
derivatives
@micheldumontier::CEDAR:Jan 201510
Data registries aren’t in sync
– Identifiers.org, Bio2RDF.org, BioSharing.org, etc.
– May be concerned about only some data
elements i.e. incomplete
– May be out-of-date and there is no easy way to
exchange data descriptions
– May contain conflicting information, unclear the
sources used.
@micheldumontier::CEDAR:Jan 201511
no single vocabulary provides all key
metadata fields
@micheldumontier::CEDAR:Jan 201512
Key Use Cases
1. Dataset Identification, Description, Licensing and
Provenance
2. Dataset Discovery (via Catalog)
3. Exchange of Dataset Descriptions
4. Dataset Linking
5. Content Summary
6. Monitoring of Dataset Changes
@micheldumontier::CEDAR:Jan 201513
Objective
• Develop a guidance note for reusing existing
vocabularies to describe datasets with RDF
– Mandatory, recommended, optional descriptors
– Identifiers
– Versioning
– Attribution
– Provenance
– Content summarization
• Recommend vocabulary-linked attributes and
value sets
• Provide reference editor and validation
@micheldumontier::CEDAR:Jan 201514
Dublin Core Metadata Initiative
Widely used
Broadly applicable
– Documents
– Datasets
✗Generic terms
✗Not comprehensive
✗No required properties
@micheldumontier::CEDAR:Jan
15
“Date: A point or period of time
associated with an event in the
lifecycle of the resource.”
DCAT: Data Catalog
 Separates Dataset and Distribution
✗No versioning
✗No prescribed properties
@micheldumontier::CEDAR:Jan 201516
17
@micheldumontier::CEDAR:Jan
VoID: Vocabulary of Interlinked
Datasets
Metadata carried with data
– Directly embedded: void:inDataset
✗No versioning
✗No checklist of requisite fields
✗Only for RDF data
We compiled a list of metadata fields
used across the community
@micheldumontier::CEDAR:Jan 201518
and then surveyed over 20 vocabularies to see if they
provided relevant metadata elements or value sets
To produce a big spreadsheet that maps metadata needs
with existing vocabularies
@micheldumontier::CEDAR:Jan 201519
@micheldumontier::CEDAR:Jan 201520
Dataset
“A collection of data, available for access or
download in one or more formats”
– DCAT
@micheldumontier::CEDAR:Jan 201521
Included Vocabularies
@micheldumontier::CEDAR:Jan 201522
Three Component Metadata Model:
description – version - distribution
@micheldumontier::CEDAR:Jan 201523
Example of Use
@micheldumontier::CEDAR:Jan 201524
61 metadata elements
@micheldumontier::CEDAR:Jan 201525
Metadata element, description, and
example of use
@micheldumontier::CEDAR:Jan 201526
Metadata Specification
constrained property:value pairs
@micheldumontier::CEDAR:Jan 201527
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].
Description
• Identifiers
• Title
• Description
• Homepage
• License
• Language
• Keywords
• Concepts and vocabularies used
• Standards
• Publication
@micheldumontier::CEDAR:Jan 201528
Attribution
• Simple Model
– Individuals are related to roles using specific
properties
e.g. dct:creator, pav:createdBy, pav:curatedBy
• Expandable Model
– Individuals are related to roles and dates by
associated object
– PROV, ViVo
@micheldumontier::CEDAR:Jan 201529
Provenance and Change
• Version number
• Source
• Provenance: retrieved from, derived from,
created with
• Frequency of change
@micheldumontier::CEDAR:Jan 201530
Availability
• Format
• Download URL
• Landing page
• SPARQL endpoint
@micheldumontier::CEDAR:Jan 201531
RDF Dataset Statistics
Basic Statistics
• # of triples
• # of typed entities
• # of distinct subjects
• # of distinct predicates
• # of distinct objects
• # of classes
• # of literals
Enhanced Statistics
• Classes + #
• Properties + triples
• Subject Types + # Property +
triples
• Object Types + # Property +
triples
• Literals + # Property +
triples
• Dataset-Dataset links
@micheldumontier::CEDAR:Jan 201532
Application scenarios
@micheldumontier::CEDAR:Jan 201533
VoID Editor
@micheldumontier::CEDAR:Jan 201534
Validator
@micheldumontier::CEDAR:Jan 201535
New version
using ShEx in
development
Towards Semantic Interoperability
@micheldumontier::CEDAR:Jan 201536
dumontierlab.com
michel.dumontier@stanford.edu
@micheldumontier::CEDAR:Jan 2015
Website: http://dumontierlab.com
Presentations: http://slideshare.com/micheldumontier
37
HCLS:
http://www.w3.org/blog/hcls/
Mailing list:
http://lists.w3.org/Archives/Public/public-semweb-lifesci/
Editors’ Draft:
http://tiny.cc/hcls-datadesc-ed
W3C Interest Group Note:
http://tiny.cc/hcls-datadesc
Special thanks to Alasdair Gray, Scott Marshall, Joachim Baran
Thanks to all other contributors to the HCLS note

W3C HCLS Dataset Description Guidelines

  • 1.
    Describing Scientific Datasets: TheHCLS Community Profile 1 Michel Dumontier, Ph.D. Associate Professor of Medicine (Biomedical Informatics) Stanford University
  • 2.
    World Wide WebConsortium (W3C) • The W3C is the main international standards organization for the World Wide Web. • The W3C is made up of over 400 member organizations for the purpose of working together in the development of standards for the World Wide Web. @micheldumontier::CEDAR:Jan 20152
  • 3.
    The Semantic Web isthe new global web of knowledge 3 @micheldumontier::CEDAR:Jan 2015 It involves standards for publishing, sharing and querying facts, expert knowledge and services It is a scalable approach to the discovery of independently formulated and distributed knowledge
  • 4.
    Resource Description Framework •It’s a language to represent knowledge – Logic-based formalism -> automated reasoning – graph-like properties -> data analysis • Good for – Describing in terms of type, attributes, relations – Integrating data from different sources – Sharing the data (W3C standard) – Reusing what is available, developing what you need, and contributing back to the web of data. @micheldumontier::CEDAR:Jan 20154
  • 5.
    @micheldumontier::CEDAR:Jan 2015 drugbank:DB00586 drugbank_vocabulary:Drug rdf:type drugbank:290 drugbank_vocabulary:Target rdf:type drugbank_vocabulary:targets rdfs:label Prostaglandin G/Hsynthase 2 [drugbank_target:290] rdfs:label Diclofenac [drugbank:DB00586] 5 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema# PREFIX drugbank: <http://bio2rdf.org/drugbank:> PREFIX drugbank_vocabulary: <http://bio2rdf.org/drugbank_vocabulary:>
  • 6.
    The linked datanetwork expands with every reference @micheldumontier::CEDAR:Jan 2015 drugbank:DB00586 pharmgkb_vocabulary:Drug rdf:type rdfs:label diclofenac [drugbank:DB00586] pharmgkb:PA449293 drugbank_vocabulary:Drug pharmgkb_vocabulary:x-drugbank diclofenac [pharmgkb:PA449293] rdfs:label DrugBank PharmGKB 6
  • 7.
    We are buildinga massive network of linked open data 7 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/” @micheldumontier::CEDAR:Jan 2015
  • 8.
    Linked Data forthe Life Sciences • Free and open source • Leverages Semantic Web standards • 10B+ interlinked statements from 30+ conventional and high value datasets • Partnerships with EBI, SIB, NCBI, DBCLS, NCBO, OpenPHACTS, and many others chemicals/drugs/formulations, genomes/genes/proteins, domains Interactions, complexes & pathways animal models and phenotypes Disease, genetic markers, treatments Terminologies & publications @micheldumontier::CEDAR:Jan 20158 Alison Callahan, Jose Cruz-Toledo, Peter Ansell, Michel Dumontier: Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data. ESWC 2013: 200-212
  • 9.
    Semantic Web for HealthCare and Life Sciences Interest Group (HCLS) • Mission: to develop, advocate for, and support the use of Semantic Web technologies across health care, life sciences, clinical research and translational medicine. • Since 2001. 86 members from 29 organizations. • Chairs: Michel Dumontier and Charlie Mead • Objectives: – Develop high level and architectural vocabularies. – Implement proof-of-concept demonstrations and industry-ready code. – Document guidelines to accelerate the adoption of the technology. – Disseminate information about the group's work at government, industry, academic events and by participating in community initiatives. @micheldumontier::CEDAR:Jan 20159
  • 10.
    Challenge: Working withWeb Data • Often have inadequate descriptions so we don’t know what they are about or how they were constructed. • datasets change over time, but often don’t come with versioning information • may have been constructed using other data, but it’s not clear which version of data was used or whether these were modified • Data may be available in a variety of formats • There may be multiple copies of data from different providers, but it’s unclear if they are exact copies or derivatives @micheldumontier::CEDAR:Jan 201510
  • 11.
    Data registries aren’tin sync – Identifiers.org, Bio2RDF.org, BioSharing.org, etc. – May be concerned about only some data elements i.e. incomplete – May be out-of-date and there is no easy way to exchange data descriptions – May contain conflicting information, unclear the sources used. @micheldumontier::CEDAR:Jan 201511
  • 12.
    no single vocabularyprovides all key metadata fields @micheldumontier::CEDAR:Jan 201512
  • 13.
    Key Use Cases 1.Dataset Identification, Description, Licensing and Provenance 2. Dataset Discovery (via Catalog) 3. Exchange of Dataset Descriptions 4. Dataset Linking 5. Content Summary 6. Monitoring of Dataset Changes @micheldumontier::CEDAR:Jan 201513
  • 14.
    Objective • Develop aguidance note for reusing existing vocabularies to describe datasets with RDF – Mandatory, recommended, optional descriptors – Identifiers – Versioning – Attribution – Provenance – Content summarization • Recommend vocabulary-linked attributes and value sets • Provide reference editor and validation @micheldumontier::CEDAR:Jan 201514
  • 15.
    Dublin Core MetadataInitiative Widely used Broadly applicable – Documents – Datasets ✗Generic terms ✗Not comprehensive ✗No required properties @micheldumontier::CEDAR:Jan 15 “Date: A point or period of time associated with an event in the lifecycle of the resource.”
  • 16.
    DCAT: Data Catalog Separates Dataset and Distribution ✗No versioning ✗No prescribed properties @micheldumontier::CEDAR:Jan 201516
  • 17.
    17 @micheldumontier::CEDAR:Jan VoID: Vocabulary ofInterlinked Datasets Metadata carried with data – Directly embedded: void:inDataset ✗No versioning ✗No checklist of requisite fields ✗Only for RDF data
  • 18.
    We compiled alist of metadata fields used across the community @micheldumontier::CEDAR:Jan 201518 and then surveyed over 20 vocabularies to see if they provided relevant metadata elements or value sets To produce a big spreadsheet that maps metadata needs with existing vocabularies
  • 19.
  • 20.
  • 21.
    Dataset “A collection ofdata, available for access or download in one or more formats” – DCAT @micheldumontier::CEDAR:Jan 201521
  • 22.
  • 23.
    Three Component MetadataModel: description – version - distribution @micheldumontier::CEDAR:Jan 201523
  • 24.
  • 25.
  • 26.
    Metadata element, description,and example of use @micheldumontier::CEDAR:Jan 201526
  • 27.
    Metadata Specification constrained property:valuepairs @micheldumontier::CEDAR:Jan 201527 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
  • 28.
    Description • Identifiers • Title •Description • Homepage • License • Language • Keywords • Concepts and vocabularies used • Standards • Publication @micheldumontier::CEDAR:Jan 201528
  • 29.
    Attribution • Simple Model –Individuals are related to roles using specific properties e.g. dct:creator, pav:createdBy, pav:curatedBy • Expandable Model – Individuals are related to roles and dates by associated object – PROV, ViVo @micheldumontier::CEDAR:Jan 201529
  • 30.
    Provenance and Change •Version number • Source • Provenance: retrieved from, derived from, created with • Frequency of change @micheldumontier::CEDAR:Jan 201530
  • 31.
    Availability • Format • DownloadURL • Landing page • SPARQL endpoint @micheldumontier::CEDAR:Jan 201531
  • 32.
    RDF Dataset Statistics BasicStatistics • # of triples • # of typed entities • # of distinct subjects • # of distinct predicates • # of distinct objects • # of classes • # of literals Enhanced Statistics • Classes + # • Properties + triples • Subject Types + # Property + triples • Object Types + # Property + triples • Literals + # Property + triples • Dataset-Dataset links @micheldumontier::CEDAR:Jan 201532
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
    dumontierlab.com [email protected] @micheldumontier::CEDAR:Jan 2015 Website: http://dumontierlab.com Presentations:http://slideshare.com/micheldumontier 37 HCLS: http://www.w3.org/blog/hcls/ Mailing list: http://lists.w3.org/Archives/Public/public-semweb-lifesci/ Editors’ Draft: http://tiny.cc/hcls-datadesc-ed W3C Interest Group Note: http://tiny.cc/hcls-datadesc Special thanks to Alasdair Gray, Scott Marshall, Joachim Baran Thanks to all other contributors to the HCLS note

Editor's Notes

  • #9 The Bio2RDF project transforms silos of life science data into a globally distributed network of linked data for biological knowledge discovery.
  • #17 We reuse several properties
  • #35 Dataset description creator Generates outline description through web form Allows you to see generated content
  • #36 Given a dataset description, does it conform to the OPS guidelines Generates error (red) and warning (orange) reports Error for MUST properties Warning for SHOULD properties Information for MAY properties