The document summarizes four presentations from the USENIX NSDI 2016 conference session on resource sharing:
1. "Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics" proposes a framework that uses results from small training jobs to efficiently predict performance of data analytics workloads in cloud environments and reduce the number of required training jobs.
2. "Cliffhanger: Scaling Performance Cliffs in Web Memory Caches" presents algorithms to dynamically allocate memory across queues in Memcached to smooth out performance cliffs and potentially save memory usage.
3. "FairRide: Near-Optimal, Fair Cache Sharing" introduces a caching policy that provides isolation guarantees, prevents strategic behavior, and