Copyright © 2011 Pearson Education, Inc.
Equations Involving Absolute Value
8.28.2
1. Solve equations involving absolute value.
| 3 | =
| 0 | =
| 2.5 | =
| – 7 | =
| – 4.8 | =
3
7
4.8
0
2.5
True or False?
The absolute value of a number is always positive.
False
he absolute value of a number ishe absolute value of a number is either positive or 0.either positive or 0.
The absolute value of a number isThe absolute value of a number is non-negativenon-negative..
Absolute Value
> 0
≥ 0
Non-negative
| x | = 5
Absolute Value EquationsAbsolute Value Equations
x = 5 x = – 5
Same Opposite
| x | = –2
No Solution
Two Solutions
Absolute Value Property
If |x| = a, where x is a variable or an expression and
a ≥ 0, then x = a or x = −a.
SolvingSolving Absolute Value EquationsAbsolute Value Equations
1. Isolate the absolute value so that the equation is
in the form |ax + b| = c.
If c < 0, the equation has no solution.
2. Separate the absolute value into two equations,
ax + b = c and ax + b = − c.
3. Solve both equations.
Absolute Value EquationsAbsolute Value Equations
9523 =+− x
423 =− x
55 −−
Same Opposite
423 =− xDrop the
absolute
value bars!
Keep the
absolute
value bars!
423 −=− x
33 −−
12 =− x
22 −−
2
1−
=x
33 −−
22 −−
72 −=− x
2
7
=x





−
2
7
2
1
,
1. Isolate
2. Two Cases
3. Solve
Absolute Value EquationsAbsolute Value Equations
6413 =−−k
1013 =−k
44 ++
Same Opposite
1013 =−kDrop the
absolute
value bars!
Keep the
absolute
value bars!
1013 −=−k
11 ++
113 =k
33
3
11
=k
11 ++
33
93 −=k
3−=k





−
3
11
3,
1. Isolate
2. Two Cases
3. Solve
Absolute Value EquationsAbsolute Value Equations
7127 =++x
57 −=+x
1212 −−
1. Isolate
2. Two Cases
3. Solve
No Solution
Absolute Value EquationsAbsolute Value Equations
052 =+y
Same Opposite
052 =+y
55 −−
52 −=y
22
2
5−
=y





−
2
5
1. Isolate
2. Two Cases
3. Solve
Opposite
Absolute Value Equations with 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values
| 5 | = | 5 |
Same Opposite
| –8 | = | –8 |
| 5 | = | –5 |
| –8 | = | 8 |
4+x ( )4+− x 4−−= x
7−x ( )7−− x 7+−= x
32 +− x ( )32 +−− x 32 −= x
Two cases!
Absolute Value Equations with 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values
2342 −=+ ww
Same Opposite
2342 −=+ ww ( )2342 −−=+ ww





− 6
5
2
,
ww 33 −−
24 −=+− w
44 −−
6−=− w
6=w
2342 +−=+ ww
245 =+w
ww 33 ++
44 −−
25 −=w
55
5
2−
=w
Absolute Value Equations with 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values
332 +=+ kk
Same Opposite
332 +=+ kk ( )332 +−=+ kk





 −−
2
1
4
5
,
kk −−
322 += k
33 −−
k21 =−
2
1−
=k
332 −−=+ kk
324 −=+k
kk 33 ++
22 −−
54 −=k
44
4
5−
=k
22
Absolute Value Equations with 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values
xx 2392 −=−
Same Opposite
xx 2392 −=− ( )xx 2392 −−=−
{ }3
xx 22 ++
394 =−x
99 ++
124 =x
3=x
xx 2392 +−=−
39 −=−
xx 22 −−
44
No Solution

Solving absolute values

  • 1.
    Copyright © 2011Pearson Education, Inc. Equations Involving Absolute Value 8.28.2 1. Solve equations involving absolute value.
  • 2.
    | 3 |= | 0 | = | 2.5 | = | – 7 | = | – 4.8 | = 3 7 4.8 0 2.5 True or False? The absolute value of a number is always positive. False he absolute value of a number ishe absolute value of a number is either positive or 0.either positive or 0. The absolute value of a number isThe absolute value of a number is non-negativenon-negative.. Absolute Value > 0 ≥ 0 Non-negative
  • 3.
    | x |= 5 Absolute Value EquationsAbsolute Value Equations x = 5 x = – 5 Same Opposite | x | = –2 No Solution Two Solutions Absolute Value Property If |x| = a, where x is a variable or an expression and a ≥ 0, then x = a or x = −a.
  • 4.
    SolvingSolving Absolute ValueEquationsAbsolute Value Equations 1. Isolate the absolute value so that the equation is in the form |ax + b| = c. If c < 0, the equation has no solution. 2. Separate the absolute value into two equations, ax + b = c and ax + b = − c. 3. Solve both equations.
  • 5.
    Absolute Value EquationsAbsoluteValue Equations 9523 =+− x 423 =− x 55 −− Same Opposite 423 =− xDrop the absolute value bars! Keep the absolute value bars! 423 −=− x 33 −− 12 =− x 22 −− 2 1− =x 33 −− 22 −− 72 −=− x 2 7 =x      − 2 7 2 1 , 1. Isolate 2. Two Cases 3. Solve
  • 6.
    Absolute Value EquationsAbsoluteValue Equations 6413 =−−k 1013 =−k 44 ++ Same Opposite 1013 =−kDrop the absolute value bars! Keep the absolute value bars! 1013 −=−k 11 ++ 113 =k 33 3 11 =k 11 ++ 33 93 −=k 3−=k      − 3 11 3, 1. Isolate 2. Two Cases 3. Solve
  • 7.
    Absolute Value EquationsAbsoluteValue Equations 7127 =++x 57 −=+x 1212 −− 1. Isolate 2. Two Cases 3. Solve No Solution
  • 8.
    Absolute Value EquationsAbsoluteValue Equations 052 =+y Same Opposite 052 =+y 55 −− 52 −=y 22 2 5− =y      − 2 5 1. Isolate 2. Two Cases 3. Solve
  • 9.
    Opposite Absolute Value Equationswith 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values | 5 | = | 5 | Same Opposite | –8 | = | –8 | | 5 | = | –5 | | –8 | = | 8 | 4+x ( )4+− x 4−−= x 7−x ( )7−− x 7+−= x 32 +− x ( )32 +−− x 32 −= x Two cases!
  • 10.
    Absolute Value Equationswith 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values 2342 −=+ ww Same Opposite 2342 −=+ ww ( )2342 −−=+ ww      − 6 5 2 , ww 33 −− 24 −=+− w 44 −− 6−=− w 6=w 2342 +−=+ ww 245 =+w ww 33 ++ 44 −− 25 −=w 55 5 2− =w
  • 11.
    Absolute Value Equationswith 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values 332 +=+ kk Same Opposite 332 +=+ kk ( )332 +−=+ kk       −− 2 1 4 5 , kk −− 322 += k 33 −− k21 =− 2 1− =k 332 −−=+ kk 324 −=+k kk 33 ++ 22 −− 54 −=k 44 4 5− =k 22
  • 12.
    Absolute Value Equationswith 2 Absolute ValuesAbsolute Value Equations with 2 Absolute Values xx 2392 −=− Same Opposite xx 2392 −=− ( )xx 2392 −−=− { }3 xx 22 ++ 394 =−x 99 ++ 124 =x 3=x xx 2392 +−=− 39 −=− xx 22 −− 44 No Solution