The document provides an overview of popular Python libraries for data science such as NumPy, SciPy, Pandas, SciKit-Learn, matplotlib, and Seaborn. It discusses the key features and uses of each library. The document also demonstrates how to load data into Pandas data frames, explore and manipulate the data frames using various methods like head(), groupby(), filtering, and slicing. Summary statistics, plotting and other analyses can be performed on the data frames using these libraries.