Computational Fluid Dynamics
                                         Assignment no. 7
                               Submission date – 20-4-2012


1. Solve the two-dimensional “Lid Driven Cavity” problem with the following
   information: The cavity dimensions are 1 m × 1 m and the fluid in the cavity has a
   constant density = 1 kg/m3 and a dynamic viscosity = 0.01Pa.s.(Re = 100) Use a
   uniform grid of size x = y = 0.05 m. The horizontal lid at the top of the cavity
   moves steadily with a velocity of 1 m/s in the +x-direction.
(a) Using the staggered grid and SIMPLE algorithm, solve for the velocity field in the
   cavity. Use First Order Upwind (UDS) for solving the momentum equations.
   Implement appropriate boundary conditions. For all iterative solutions use the
   point-by-point Gauss- Seidal scheme. Use the overall convergence criterion of
   10-7 for the mass source.
(b) Plot the x-velocity profile at vertical centerline (x = 0.5 m) and y-velocity profile at
   horizontal centerline (y = 0.5 m) and compare with bench mark results.


                  X-Velocity profile                  Y-Velocity profile
                 Y          X-Velocity              X         Y-velocity
                 1               1                     1           0
              0.9766         0.84123                0.9688     -0.05906
              0.9688         0.78871                0.9609     -0.07391
              0.9609         0.73722                0.9531     -0.08864
               0.95          0.68717                0.9453     -0.10313
              0.8516         0.23151                0.9063     -0.16914
              0.7344         0.00332                0.8594     -0.22445
              0.6172         -0.13641               0.8047     -0.24533
                0.5           -0.2058                 0.5      -0.05454
              0.4531          -0.2109               0.2344      0.17527
              0.2813        -0.156662               0.2266      0.17507
              0.1719          -0.1015               0.1563      0.16077
              0.1016         -0.06434               0.0938      0.12317
              0.0703         -0.04775               0.0781      0.1089
              0.0625         -0.04192               0.0703      0.10009
              0.0547         -0.03717               0.0625      0.09233
                 0               0                     0           0

Assignment simple algorithm

  • 1.
    Computational Fluid Dynamics Assignment no. 7 Submission date – 20-4-2012 1. Solve the two-dimensional “Lid Driven Cavity” problem with the following information: The cavity dimensions are 1 m × 1 m and the fluid in the cavity has a constant density = 1 kg/m3 and a dynamic viscosity = 0.01Pa.s.(Re = 100) Use a uniform grid of size x = y = 0.05 m. The horizontal lid at the top of the cavity moves steadily with a velocity of 1 m/s in the +x-direction. (a) Using the staggered grid and SIMPLE algorithm, solve for the velocity field in the cavity. Use First Order Upwind (UDS) for solving the momentum equations. Implement appropriate boundary conditions. For all iterative solutions use the point-by-point Gauss- Seidal scheme. Use the overall convergence criterion of 10-7 for the mass source. (b) Plot the x-velocity profile at vertical centerline (x = 0.5 m) and y-velocity profile at horizontal centerline (y = 0.5 m) and compare with bench mark results. X-Velocity profile Y-Velocity profile Y X-Velocity X Y-velocity 1 1 1 0 0.9766 0.84123 0.9688 -0.05906 0.9688 0.78871 0.9609 -0.07391 0.9609 0.73722 0.9531 -0.08864 0.95 0.68717 0.9453 -0.10313 0.8516 0.23151 0.9063 -0.16914 0.7344 0.00332 0.8594 -0.22445 0.6172 -0.13641 0.8047 -0.24533 0.5 -0.2058 0.5 -0.05454 0.4531 -0.2109 0.2344 0.17527 0.2813 -0.156662 0.2266 0.17507 0.1719 -0.1015 0.1563 0.16077 0.1016 -0.06434 0.0938 0.12317 0.0703 -0.04775 0.0781 0.1089 0.0625 -0.04192 0.0703 0.10009 0.0547 -0.03717 0.0625 0.09233 0 0 0 0