Artificial Neural Networks (ANNs)
XOR Step-By-Step
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
ALL DEPARTMENTS
ARTIFICIAL INTELLIGENCE
‫المنوفية‬ ‫جامعة‬
‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬
‫األقسام‬ ‫جميع‬
‫الذكاء‬‫اإلصطناعي‬
‫المنوفية‬ ‫جامعة‬
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
Classification Example
BA
01
1
10
00
0
11
Neural Networks
Input Hidden Output
BA
01
1
10
00
0
11
Neural Networks
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Neural Networks
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Can`t be Solved Linearly.
Single Layer Perceptron Can`t Work.
Use Hidden Layer.
Neural Networks
BA
01
1
10
00
0
11
Input OutputHidden
Input Layer
Input Output
A
B
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Hidden Layer
Start by Two Neurons
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
A
B
Output Layer
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
1/0
𝒀𝒋
A
B
Weights
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Weights=𝑾𝒊
A
B
1/0
𝒀𝒋
Weights
Input Layer – Hidden Layer
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Weights=𝑾𝒊
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
A
B
1/0
𝒀𝒋
Weights
Hidden Layer – Output Layer
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Weights=𝑾𝒊
𝑾 𝟓
𝑾 𝟔
A
B
1/0
𝒀𝒋
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
All Layers
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Weights=𝑾𝒊
𝑾 𝟓
𝑾 𝟔
1/0
𝒀𝒋
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
Input Hidden
1/0
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
Input Hidden
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Components
Output
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
s=SOP(𝑿𝒊, 𝑾𝒊)
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Each Hidden/Output Layer
Neuron has its SOP.
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Outputs
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
Class Label
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Outputs
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
Class Label
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
Each Hidden/Output
Layer Neuron has its
Activation Function.
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Functions
Piecewise
Linear Sigmoid Binary
Activation Functions
Which activation function to use?
Outputs
Class
Labels
Activation
Function
TWO Class
Labels
TWO
Outputs
One that gives two outputs.
Which activation function to use?
𝑪𝒋𝒀𝒋
BA
01
1
10
00
0
11
BA
01
1 10
00
0 11
Activation Functions
Piecewise
Linear Sigmoid BinaryBinary
Activation Function
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
1/0
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Hidden Layer Neurons
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
Bias
Output Layer Neurons
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟑
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
All Bias Values
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
1/0
+1
𝒃 𝟑
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
1/0
+1
𝒃 𝟑
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
1/0
+1
𝒃 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y y=ax+b
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y y=ax+b
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y y=ax+b
Y-Intercept
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y y=ax+b
Y-Intercept
b=0
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
X
Y
Y-Intercept
b=0
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
y=ax+b
Bias Importance
Input Output
X
Y
Y-Intercept
b=+v
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
y=ax+b
Bias Importance
Input Output
X
Y
Y-Intercept
b=+v
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
y=ax+b
Bias Importance
Input Output
X
Y
Y-Intercept
b=-v
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
y=ax+b
Bias Importance
Input Output
X
Y
Y-Intercept
b=+v
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
y=ax+b
Bias Importance
Input Output
Same Concept Applies to Bias
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊+BIAS
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊+BIAS
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊+BIAS
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊+BIAS
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias Importance
Input Output
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊+BIAS
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Learning Rate
𝟎 ≤ η ≤ 𝟏
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Inputs 𝑿 𝒎
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Weights 𝑾 𝒎
𝟎 ≤ η ≤ 𝟏
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Bias
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Sum Of Products (SOP) 𝒔
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Activation Function 𝒃𝒊𝒏
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Summary of Parameters
Outputs 𝒀𝒋
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Summary of Parameters
Learning Rate η
𝟎 ≤ η ≤ 𝟏
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Other Parameters
Step n
𝒏 = 𝟎, 𝟏, 𝟐, …
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Other Parameters
Desired Output 𝒅𝒋
𝒏 = 𝟎, 𝟏, 𝟐, …
𝒅 𝒏 =
𝟏, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟏 (𝟏)
𝟎, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟐 (𝟎)
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Neural Networks Training Steps
Weights Initialization
Inputs Application
Sum of Inputs-Weights Products
Activation Function Response Calculation
Weights Adaptation
Back to Step 2
1
2
3
4
5
6
Regarding 5th Step: Weights Adaptation
• If the predicted output Y is not the same as the desired output d,
then weights are to be adapted according to the following equation:
𝑾 𝒏 + 𝟏 = 𝑾 𝒏 + η 𝒅 𝒏 − 𝒀 𝒏 𝑿(𝒏)
Where
𝑾 𝒏 = [𝒃 𝒏 , 𝑾 𝟏(𝒏), 𝑾 𝟐(𝒏), 𝑾 𝟑(𝒏), … , 𝑾 𝒎(𝒏)]
Neural Networks
Training Example
Step n=0
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=0:
η = .001
𝑋 𝑛 = 𝑋 0 = +1, +1, +1,1, 0
𝑊 𝑛 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 0 = 1
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=0
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+1*1+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+1*1+0*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 - Output
𝒀 𝒏 = 𝒀 𝟎 = 𝒀 𝑺3
= 1
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟎 = 1
𝐝 𝒏 = 𝒅 𝟎 = 1
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=1:
η = .001
𝑋 𝑛 = 𝑋 1 = +1, +1, +1,0, 1
𝑊 𝑛 = 𝑊 1 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 1 = +1
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=1
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+0*1+1*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+0*1+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 - Output
𝒀 𝒏 = 𝒀 𝟏 = 𝒀 𝑺3
= 1
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟏 = 1
𝐝 𝒏 = 𝒅 𝟏 = 1
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=2:
η = .001
𝑋 𝑛 = 𝑋 2 = +1, +1, +1,0, 0
𝑊 𝑛 = 𝑊 2 = 𝑊 1 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 2 = 0
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=2
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+0*1+0*1
=-1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −𝟏. 𝟓
= 𝟎
𝒃𝒊n 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+0*1+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑺𝑮𝑵 𝑺2
= 𝑺𝑮𝑵 −. 𝟓
=0
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 - Output
𝒀 𝒏 = 𝒀 𝟐 = 𝒀 𝑺3
= 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟐 = 𝟎
𝐝 𝒏 = 𝒅 𝟐 = 𝟎
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=3:
η = .001
𝑋 𝑛 = 𝑋 3 = +1, +1, +1,1, 1
𝑊 𝑛 = 𝑊 3 = 𝑊 2 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 3 = 0
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=3
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+1*1+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+1*1+1*1
=1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 𝟏. 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+1*-2+1*1
=-1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 −𝟏. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 - Output
𝒀 𝒏 = 𝒀 𝟑 = 𝒀 𝑺3
= 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟑 = 𝟎
𝐝 𝒏 = 𝒅 𝟑 = 𝟎
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Final Weights
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Current weights predicted
the desired outputs.

Artificial Neural Networks (ANNs) - XOR - Step-By-Step

  • 1.
    Artificial Neural Networks(ANNs) XOR Step-By-Step MENOUFIA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATION ALL DEPARTMENTS ARTIFICIAL INTELLIGENCE ‫المنوفية‬ ‫جامعة‬ ‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬ ‫األقسام‬ ‫جميع‬ ‫الذكاء‬‫اإلصطناعي‬ ‫المنوفية‬ ‫جامعة‬ Ahmed Fawzy Gad [email protected]
  • 2.
  • 3.
    Neural Networks Input HiddenOutput BA 01 1 10 00 0 11
  • 4.
  • 5.
    Neural Networks BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Can`t be Solved Linearly. Single Layer Perceptron Can`t Work. Use Hidden Layer.
  • 6.
  • 7.
  • 8.
    Hidden Layer Start byTwo Neurons Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Hidden A B
  • 9.
  • 10.
    Weights Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Hidden Weights=𝑾𝒊 A B 1/0 𝒀𝒋
  • 11.
    Weights Input Layer –Hidden Layer Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Hidden Weights=𝑾𝒊 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 A B 1/0 𝒀𝒋
  • 12.
    Weights Hidden Layer –Output Layer Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Hidden Weights=𝑾𝒊 𝑾 𝟓 𝑾 𝟔 A B 1/0 𝒀𝒋 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 13.
    All Layers Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 00.2 0.4 0.6 0.8 1 1.2 Hidden Weights=𝑾𝒊 𝑾 𝟓 𝑾 𝟔 1/0 𝒀𝒋 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 14.
    Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 Input Hidden 1/0 0 0.2 0.4 0.6 0.8 1 1.2 00.2 0.4 0.6 0.8 1 1.2 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 15.
    Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 Input Hidden 0 0.2 0.4 0.6 0.8 1 1.2 00.2 0.4 0.6 0.8 1 1.2 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 16.
    Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 17.
    Activation Function Components Output 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 18.
    Activation Function Inputs Output s 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 19.
    Activation Function Inputs Output s 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.20.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 20.
    Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 00.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 21.
    Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝑿𝟏 𝑿 𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 22.
    𝑾 𝟓 𝑾 𝟔 A B 𝑾𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 s=SOP(𝑿𝒊, 𝑾𝒊) 1/0
  • 23.
    Activation Function Inputs Output s 𝑿 𝟏 𝑿𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0 Each Hidden/Output Layer Neuron has its SOP.
  • 24.
    Activation Function Inputs Output s 𝑿 𝟏 𝑿𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 25.
    Activation Function Inputs Output s 𝑿 𝟏 𝑿𝟐 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 26.
    Activation Function Inputs Output s 𝑿 𝟏 𝑿𝟐 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 27.
    Activation Function Outputs Output F(s)s 𝑿 𝟏 𝑿𝟐 Class Label 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 28.
    Activation Function Outputs Output F(s)s 𝑿 𝟏 𝑿𝟐 Class Label 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 Each Hidden/Output Layer Neuron has its Activation Function. 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 29.
  • 30.
    Activation Functions Which activationfunction to use? Outputs Class Labels Activation Function TWO Class Labels TWO Outputs One that gives two outputs. Which activation function to use? 𝑪𝒋𝒀𝒋 BA 01 1 10 00 0 11 BA 01 1 10 00 0 11
  • 31.
  • 32.
    Activation Function Output F(s)s 𝑿 𝟏 𝑿𝟐 bin 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1/0 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 33.
    Bias Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿𝟐 bin 𝒀𝒋 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 34.
    Bias Hidden Layer Neurons InputOutput BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0
  • 35.
    Bias Output Layer Neurons InputOutput BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟑 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 36.
    All Bias Values InputOutput BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 37.
    Bias Add Bias toSOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 38.
    Bias Add Bias toSOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 1/0 +1 𝒃 𝟑 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 39.
    Bias Add Bias toSOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 1/0 +1 𝒃 𝟑 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 40.
    Bias Add Bias toSOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 1/0 +1 𝒃 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 41.
    Bias Importance Input Output BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 42.
    Bias Importance Input Output X Y BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 43.
    Bias Importance Input Output X Yy=ax+b BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 44.
    Bias Importance Input Output X Yy=ax+b BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 45.
    Bias Importance Input Output X Yy=ax+b Y-Intercept BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 46.
    Bias Importance Input Output X Yy=ax+b Y-Intercept b=0 BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 47.
    Bias Importance Input Output X Y Y-Intercept b=0 BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 y=ax+b
  • 48.
    Bias Importance Input Output X Y Y-Intercept b=+v BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 y=ax+b
  • 49.
    Bias Importance Input Output X Y Y-Intercept b=+v BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 y=ax+b
  • 50.
    Bias Importance Input Output X Y Y-Intercept b=-v BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 y=ax+b
  • 51.
    Bias Importance Input Output X Y Y-Intercept b=+v BA 01 1 10 00 0 11 F(s)s 𝑿𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 y=ax+b
  • 52.
    Bias Importance Input Output SameConcept Applies to Bias S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊+BIAS BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 53.
    Bias Importance Input Output S=𝟏 𝒎 𝑿𝒊 𝑾𝒊+BIAS BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 54.
    Bias Importance Input Output S=𝟏 𝒎 𝑿𝒊 𝑾𝒊+BIAS BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 55.
    Bias Importance Input Output S=𝟏 𝒎 𝑿𝒊 𝑾𝒊+BIAS BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 56.
    Bias Importance Input Output S=𝟏 𝒎 𝑿𝒊 𝑾𝒊+BIAS BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 57.
    Learning Rate 𝟎 ≤η ≤ 𝟏 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 58.
    Summary of Parameters Inputs𝑿 𝒎 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 59.
    Summary of Parameters Weights𝑾 𝒎 𝟎 ≤ η ≤ 𝟏 W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …) 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 60.
    Summary of Parameters Bias 𝟎≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …) F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 61.
    Summary of Parameters SumOf Products (SOP) 𝒔 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …) F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 62.
    Summary of Parameters ActivationFunction 𝒃𝒊𝒏 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …) F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 63.
    Summary of Parameters Outputs𝒀𝒋 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 64.
    Summary of Parameters LearningRate η 𝟎 ≤ η ≤ 𝟏 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 65.
    Other Parameters Step n 𝒏= 𝟎, 𝟏, 𝟐, … F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 66.
    Other Parameters Desired Output𝒅𝒋 𝒏 = 𝟎, 𝟏, 𝟐, … 𝒅 𝒏 = 𝟏, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟏 (𝟏) 𝟎, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟐 (𝟎) BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 67.
    Neural Networks TrainingSteps Weights Initialization Inputs Application Sum of Inputs-Weights Products Activation Function Response Calculation Weights Adaptation Back to Step 2 1 2 3 4 5 6
  • 68.
    Regarding 5th Step:Weights Adaptation • If the predicted output Y is not the same as the desired output d, then weights are to be adapted according to the following equation: 𝑾 𝒏 + 𝟏 = 𝑾 𝒏 + η 𝒅 𝒏 − 𝒀 𝒏 𝑿(𝒏) Where 𝑾 𝒏 = [𝒃 𝒏 , 𝑾 𝟏(𝒏), 𝑾 𝟐(𝒏), 𝑾 𝟑(𝒏), … , 𝑾 𝒎(𝒏)]
  • 69.
    Neural Networks Training Example Stepn=0 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=0: η = .001 𝑋 𝑛 = 𝑋 0 = +1, +1, +1,1, 0 𝑊 𝑛 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 0 = 1 BA 01 1 => 1 10 00 0 => 0 11
  • 70.
    Neural Networks Training Example Stepn=0 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 71.
    Neural Networks Training Example Stepn=0 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+1*1+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 72.
    Neural Networks Training Example Stepn=0 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 73.
    Neural Networks Training Example Stepn=0 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+1*1+0*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 74.
    Neural Networks Training Example Stepn=0 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 75.
    Neural Networks Training Example Stepn=0 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 76.
    Neural Networks Training Example Stepn=0 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 77.
    Neural Networks Training Example Stepn=0 - Output 𝒀 𝒏 = 𝒀 𝟎 = 𝒀 𝑺3 = 1 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 78.
    Neural Networks Training Example Stepn=0 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟎 = 1 𝐝 𝒏 = 𝒅 𝟎 = 1 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 79.
    Neural Networks Training Example Stepn=1 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=1: η = .001 𝑋 𝑛 = 𝑋 1 = +1, +1, +1,0, 1 𝑊 𝑛 = 𝑊 1 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 1 = +1 BA 01 1 => 1 10 00 0 => 0 11
  • 80.
    Neural Networks Training Example Stepn=1 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 81.
    Neural Networks Training Example Stepn=1 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+0*1+1*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 82.
    Neural Networks Training Example Stepn=1 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 83.
    Neural Networks Training Example Stepn=1 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+0*1+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 84.
    Neural Networks Training Example Stepn=1 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 85.
    Neural Networks Training Example Stepn=1 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 86.
    Neural Networks Training Example Stepn=1 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 87.
    Neural Networks Training Example Stepn=1 - Output 𝒀 𝒏 = 𝒀 𝟏 = 𝒀 𝑺3 = 1 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 88.
    Neural Networks Training Example Stepn=1 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟏 = 1 𝐝 𝒏 = 𝒅 𝟏 = 1 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 89.
    Neural Networks Training Example Stepn=2 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=2: η = .001 𝑋 𝑛 = 𝑋 2 = +1, +1, +1,0, 0 𝑊 𝑛 = 𝑊 2 = 𝑊 1 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 2 = 0 BA 01 1 => 1 10 00 0 => 0 11
  • 90.
    Neural Networks Training Example Stepn=2 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 91.
    Neural Networks Training Example Stepn=2 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+0*1+0*1 =-1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 92.
    Neural Networks Training Example Stepn=2 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −𝟏. 𝟓 = 𝟎 𝒃𝒊n 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 93.
    Neural Networks Training Example Stepn=2 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+0*1+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 94.
    Neural Networks Training Example Stepn=2 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑺𝑮𝑵 𝑺2 = 𝑺𝑮𝑵 −. 𝟓 =0 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 95.
    Neural Networks Training Example Stepn=2 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 96.
    Neural Networks Training Example Stepn=2 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 97.
    Neural Networks Training Example Stepn=2 - Output 𝒀 𝒏 = 𝒀 𝟐 = 𝒀 𝑺3 = 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 98.
    Neural Networks Training Example Stepn=2 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟐 = 𝟎 𝐝 𝒏 = 𝒅 𝟐 = 𝟎 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 99.
    Neural Networks Training Example Stepn=3 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=3: η = .001 𝑋 𝑛 = 𝑋 3 = +1, +1, +1,1, 1 𝑊 𝑛 = 𝑊 3 = 𝑊 2 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 3 = 0 BA 01 1 => 1 10 00 0 => 0 11
  • 100.
    Neural Networks Training Example Stepn=3 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 101.
    Neural Networks Training Example Stepn=3 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+1*1+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 102.
    Neural Networks Training Example Stepn=3 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 103.
    Neural Networks Training Example Stepn=3 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+1*1+1*1 =1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 104.
    Neural Networks Training Example Stepn=3 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 𝟏. 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 105.
    Neural Networks Training Example Stepn=3 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+1*-2+1*1 =-1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 106.
    Neural Networks Training Example Stepn=3 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 −𝟏. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 107.
    Neural Networks Training Example Stepn=3 - Output 𝒀 𝒏 = 𝒀 𝟑 = 𝒀 𝑺3 = 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 108.
    Neural Networks Training Example Stepn=3 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟑 = 𝟎 𝐝 𝒏 = 𝒅 𝟑 = 𝟎 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 109.
    Final Weights s 𝑿 𝟏 𝑿𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin Current weights predicted the desired outputs.