Computer Vision: Correlation,
Convolution, and Gradient
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
INFORMATION TECHNOLOGY
COMPUTER VISION
‫المنوفية‬ ‫جامعة‬
‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬
‫المعلومات‬ ‫تكنولوجيا‬
‫بالحاسب‬ ‫الرؤيا‬
‫المنوفية‬ ‫جامعة‬
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
Tuesday 3 October 2017
Index
• Correlation
• Python Implementation
• Convolution
• Python Implementation
• Gradient
• Python Implementation
Correlation
Convolution
Gradient Filtering
CORRELATION
Correlation for 2D Image
• Correlation is used to match a
template to an image.
• Can you tell where the following
template exactly located in the
image?
• Using correlation we can find the
image region that best matches
the template.
?
How 2D Correlation Works?
• Given a template, using correlation the
template will pass through each image part
and a similarity check take place to find
how similar the template and the current
image part being processed.
• Starting by placing the template top-left
corner on the top-left corner of the image,
a similarity measure is calculated.
How 2D Correlation Works?
• Given a template, using correlation the
template will pass through each image part
and a similarity check take place to find
how similar the template and the current
image part being processed.
• Starting by placing the template top-left
corner on the top-left corner of the image,
a similarity measure is calculated.
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
How 2D Correlation Works?
• Given a template, using correlation the
template will pass through each image part
and a similarity check take place to find
how similar the template and the current
image part being processed.
• Starting by placing the template top-left
corner on the top-left corner of the image,
a similarity measure is calculated.
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 ∗ 1 + 1 ∗ 3 − 4 ∗ 4 + 3 ∗ 2 + 2 ∗ 7 + 5 ∗ 4
− 1 ∗ 6 + 8 ∗ 2 + 1 ∗ 5
= 𝟒𝟒
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44
Did you get why template
sizes are odd?
Even Template Size
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Even template sizes has no center.
E.g. 2x3, 2x2, 5x6, …
𝟖𝟒
???
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
44
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 ∗ 3 + 1 ∗ 4 − 4 ∗ 3 + 3 ∗ 7 + 2 ∗ 4 + 5 ∗ 1
− 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 2
= 𝟕𝟐
44
Correlation for 2D Image
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72
Based on the current step, what is the region that
best matches the template?
It is the one corresponding to the highest score in
the result matrix.
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
44 72
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
44 72
This will cause the program performing correlation to
fall into index out of bounds exception.
Padding by Zeros
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 0
0
0
0
It doesn`t affect multiplication.
Why Zero?
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 0
0
0
0
2 1 -4
3 2 5
-1 8 1
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 0
0
0
0
2 ∗ 4 + 1 ∗ 3 − 4 ∗ 0 + 3 ∗ 4 + 2 ∗ 1 + 5 ∗ 0
− 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 0
= 𝟑𝟔
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 36 0
0
0
0
2 ∗ 4 + 1 ∗ 3 − 4 ∗ 0 + 3 ∗ 4 + 2 ∗ 1 + 5 ∗ 0
− 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 0
= 𝟑𝟔
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
44 72 36
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
2 1 -4
3 2 5
-1 8 1
44 72 36
Pad by Zeros
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 36
0 0 0 0
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 36
0 0 0 0
2 1 -4
3 2 5
-1 8 1
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 36
0 0 0 0
2 ∗ 2 + 1 ∗ 5 − 4 ∗ 2 + 3 ∗ 6 + 2 ∗ 8 + 5 ∗ 9
− 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0
= 𝟖𝟎
Continue Correlating the Template
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
Template – 3x3
44 72 36
80
Continue till end.
• It depends on both the template size.
• For 3x3 template, pad two columns and two
rows. One column to the left and another to
the right. One row at the top and one row
at the bottom.
• For 5x5? Pad 4 rows (two left & two right)
and 5 columns (two top & two bottom).
• Generally, for N*N template pad (N-1)/2
columns and rows at each side.
How much Padding Required?
1 3 4 3
2 7 4 1
6 2 5 2
13 6 8 9
0 0 0 0
0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
How to do this
Programmatically.?
Implementing Correlation in Python – 3x3
Template
Implementing Correlation in Python – 141x141
Template
Implementing Correlation in Python – 141x141
Template
Implementing Correlation in Python – 141x141
Template
Implementing Correlation in Python – 141x141
Template
Is this is the
optimal results?
No. But WHY?
Matching using Correlation
• Matching depends on just
multiplication.
• The highest results of
multiplication is the one selected
as best match.
• But the highest results of
multiplication not always refers
to best match.
Template Result
Matching using
Correlation
• Make a simple edit on the image
by adding a pure white
rectangular area.
• Use the previous template.
• Apply the algorithm.
Template
Matching using Correlation
• The best matched region is the
white region.
• The reason is that correlation
depends on multiplication.
• What gives highest multiplication
results is the best match.
• Getting high results corresponds to
multiplying by higher numbers.
• The highest pixel value for gray
images is 255 for white.
Implementing Correlation in Python – Generic
Code – Squared Odd Sized Templates
Implementing Correlation in Python – Generic
Code – Squared Odd Sized Templates
Implementing Correlation in Python – Generic
Code – Squared Odd Sized Templates
Implementing Correlation in Python – Generic
Code – Squared Odd Sized Templates
CONVOLUTION
What is Convolution?
• The primary objective of mathematical convolution is combining two
signals to generate a third signal. Convolution is not limited on digital
image processing and it is a broad term that works on signals.
Input Signal
Impulse Response
Output Signal
System
Convolution
Convolution Formula for 2D Digital Signal
• Convolution is applied similarly to correlation.
• Note how similar the formulas for correlation and convolution. The
only difference is that in the signs of 𝒖 and 𝒗 variables.
• Correlation formula has positive signs for 𝒖 and 𝒗 while correlation
has negative signs for them.
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]
Is just changing
signs make sense?
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
Correlation Vs. Convolution
𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 =
𝒖=−𝒌
𝒌
𝒗=−𝒌
𝒌
𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
Correlation Convolution
13204
458047
09373
.2.4.1
.5.8.3
.9.5.7
.2.4.1
.5.8.3
.9.5.7
-1, 1-1, 0-1, -1
0, 10, 00, -1
1, 11, 01, -1
1, -11, 01, 1
0, -10, 00, 1
-1, -1-1, 0-1, 1
How to simplify
convolution?
Simplifying Convolution
.2.4.1
.5.8.3
.9.5.7
1, -11, 01, 1
0, -10, 00, 1
-1, -1-1, 0-1, 1
*
13204
458047
09373
.7.5.9
.3.8.5
.1.4.2
13204
458047
09373= -1, 1-1, 0-1, -1
0, 10, 00, -1
1, 11, 01, -1
Just rotate the template with 180 degrees before
multiplying by the image.
*
Applying convolution is similar to correlation except
for flipping the template before multiplication.
Two Many Multiplications & Additions
• Assume to remove noise from an image, it should be applied to two
filters (filter1 and filter2). Each filter has size of 7x7 pixels and the
image is of size 1024x1024 pixels.
• A simple approach is to apply filter1 to the image then apply filter2 to
the output of filter1.
• Too many multiplications and additions due to applying two filters on
the image. 1,024 x 1,024 x 49 multiplication and 1,000 x 1,000 x 49
addition for the single filter.
1024x1024
Image
Filter1
* Temp. Result Filter2
* Result
Convolution Associative Property
• Using the associative property of convolution, we can reduce the
number of multiplications and additions.
• To apply two filters f1 and f2 over an image, we can merge the two
filters together then apply the convolution between the resultant new
filter and the image.
• Finally, there is only 1,024 x 1024 x 49 multiplication and addition.
(Im * 𝒇 𝟏) * 𝒇 𝟐 = Im * (𝒇 𝟏 * 𝒇 𝟐)
For 𝒇 𝟏 * 𝒇 𝟐 = 𝒇 𝟑
Result is Im * 𝒇 𝟑
Convolution Applications
• Convolution is used to merge signals.
• It is used to apply operations like smoothing and filtering images
where the primary task is selecting the appropriate filter template or
mask.
• Convolution can also be used to find gradients of the image.
Implementing Convolution in Python
• The implementation of convolution is identical to correlation except
for the new command that rotates the template.
GRADIENT
Image Gradients
• Image gradients can be defined as change of intensity in some direction.
• Based on the way gradients were calculated and specifically based on
the template/kernel used, gradients can be horizontal (X direction) or
vertical (Y direction) in direction.
-1-1-1
000
111
Horizontal
10-1
10-1
10-1
Vertical
θ = 𝑡𝑎𝑛−1
[
𝐺 𝑦
𝐺 𝑥
] 𝐺 = 𝐺 𝑥 + 𝐺 𝑦
Image Gradient Calculation Steps
• Calculate the image gradient in X direction at each pixel.
• Calculate the image gradient in Y direction at each pixel.
• Calculate the overall gradient for the pixel.
Implementing Horizontal Gradient in Python
Implementing Horizontal Gradient in Python
Implementing Vertical Gradient in Python
Implementing Vertical Gradient in Python
FILTERING
Example – Mean Filter
•Mean Filter Kernel.
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
𝟏
𝟗
∗ 58 +
𝟏
𝟗
∗ 3 +
𝟏
𝟗
∗ 213 +
𝟏
𝟗
∗ 185 +
𝟏
𝟗
∗ 87 +
𝟏
𝟗
∗ 32
+
𝟏
𝟗
∗ 70 +
𝟏
𝟗
∗ 66 +
𝟏
𝟗
∗ 60
= 85.67 ~ 86
Implement in Python (Deadline next week starting @ 7 Oct. 2017).
1. Mean Smoothing Filter
2. Gaussian Smoothing Filter
3. Sharpening Filter
4. Median Filter

Computer Vision: Correlation, Convolution, and Gradient

  • 1.
    Computer Vision: Correlation, Convolution,and Gradient MENOUFIA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATION INFORMATION TECHNOLOGY COMPUTER VISION ‫المنوفية‬ ‫جامعة‬ ‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬ ‫المعلومات‬ ‫تكنولوجيا‬ ‫بالحاسب‬ ‫الرؤيا‬ ‫المنوفية‬ ‫جامعة‬ Ahmed Fawzy Gad [email protected] Tuesday 3 October 2017
  • 2.
    Index • Correlation • PythonImplementation • Convolution • Python Implementation • Gradient • Python Implementation Correlation Convolution Gradient Filtering
  • 3.
  • 4.
    Correlation for 2DImage • Correlation is used to match a template to an image. • Can you tell where the following template exactly located in the image? • Using correlation we can find the image region that best matches the template. ?
  • 5.
    How 2D CorrelationWorks? • Given a template, using correlation the template will pass through each image part and a similarity check take place to find how similar the template and the current image part being processed. • Starting by placing the template top-left corner on the top-left corner of the image, a similarity measure is calculated.
  • 6.
    How 2D CorrelationWorks? • Given a template, using correlation the template will pass through each image part and a similarity check take place to find how similar the template and the current image part being processed. • Starting by placing the template top-left corner on the top-left corner of the image, a similarity measure is calculated. 𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗]
  • 7.
    How 2D CorrelationWorks? • Given a template, using correlation the template will pass through each image part and a similarity check take place to find how similar the template and the current image part being processed. • Starting by placing the template top-left corner on the top-left corner of the image, a similarity measure is calculated.
  • 8.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1
  • 9.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1
  • 10.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 ∗ 1 + 1 ∗ 3 − 4 ∗ 4 + 3 ∗ 2 + 2 ∗ 7 + 5 ∗ 4 − 1 ∗ 6 + 8 ∗ 2 + 1 ∗ 5 = 𝟒𝟒
  • 11.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 Did you get why template sizes are odd?
  • 12.
    Even Template Size 583 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Even template sizes has no center. E.g. 2x3, 2x2, 5x6, … 𝟖𝟒 ???
  • 13.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1 44
  • 14.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 ∗ 3 + 1 ∗ 4 − 4 ∗ 3 + 3 ∗ 7 + 2 ∗ 4 + 5 ∗ 1 − 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 2 = 𝟕𝟐 44
  • 15.
    Correlation for 2DImage 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 Based on the current step, what is the region that best matches the template? It is the one corresponding to the highest score in the result matrix.
  • 16.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1 44 72
  • 17.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1 44 72 This will cause the program performing correlation to fall into index out of bounds exception.
  • 18.
    Padding by Zeros 13 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 0 0 0 0 It doesn`t affect multiplication. Why Zero?
  • 19.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 0 0 0 0 2 1 -4 3 2 5 -1 8 1
  • 20.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 0 0 0 0 2 ∗ 4 + 1 ∗ 3 − 4 ∗ 0 + 3 ∗ 4 + 2 ∗ 1 + 5 ∗ 0 − 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 0 = 𝟑𝟔
  • 21.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 36 0 0 0 0 2 ∗ 4 + 1 ∗ 3 − 4 ∗ 0 + 3 ∗ 4 + 2 ∗ 1 + 5 ∗ 0 − 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 0 = 𝟑𝟔
  • 22.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1 44 72 36
  • 23.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 2 1 -4 3 2 5 -1 8 1 44 72 36
  • 24.
    Pad by Zeros 13 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 36 0 0 0 0
  • 25.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 36 0 0 0 0 2 1 -4 3 2 5 -1 8 1
  • 26.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 36 0 0 0 0 2 ∗ 2 + 1 ∗ 5 − 4 ∗ 2 + 3 ∗ 6 + 2 ∗ 8 + 5 ∗ 9 − 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0 = 𝟖𝟎
  • 27.
    Continue Correlating theTemplate 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 Template – 3x3 44 72 36 80 Continue till end.
  • 28.
    • It dependson both the template size. • For 3x3 template, pad two columns and two rows. One column to the left and another to the right. One row at the top and one row at the bottom. • For 5x5? Pad 4 rows (two left & two right) and 5 columns (two top & two bottom). • Generally, for N*N template pad (N-1)/2 columns and rows at each side. How much Padding Required? 1 3 4 3 2 7 4 1 6 2 5 2 13 6 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 How to do this Programmatically.?
  • 29.
    Implementing Correlation inPython – 3x3 Template
  • 30.
    Implementing Correlation inPython – 141x141 Template
  • 31.
    Implementing Correlation inPython – 141x141 Template
  • 32.
    Implementing Correlation inPython – 141x141 Template
  • 33.
    Implementing Correlation inPython – 141x141 Template Is this is the optimal results? No. But WHY?
  • 34.
    Matching using Correlation •Matching depends on just multiplication. • The highest results of multiplication is the one selected as best match. • But the highest results of multiplication not always refers to best match. Template Result
  • 35.
    Matching using Correlation • Makea simple edit on the image by adding a pure white rectangular area. • Use the previous template. • Apply the algorithm. Template
  • 36.
    Matching using Correlation •The best matched region is the white region. • The reason is that correlation depends on multiplication. • What gives highest multiplication results is the best match. • Getting high results corresponds to multiplying by higher numbers. • The highest pixel value for gray images is 255 for white.
  • 37.
    Implementing Correlation inPython – Generic Code – Squared Odd Sized Templates
  • 38.
    Implementing Correlation inPython – Generic Code – Squared Odd Sized Templates
  • 39.
    Implementing Correlation inPython – Generic Code – Squared Odd Sized Templates
  • 40.
    Implementing Correlation inPython – Generic Code – Squared Odd Sized Templates
  • 41.
  • 42.
    What is Convolution? •The primary objective of mathematical convolution is combining two signals to generate a third signal. Convolution is not limited on digital image processing and it is a broad term that works on signals. Input Signal Impulse Response Output Signal System Convolution
  • 43.
    Convolution Formula for2D Digital Signal • Convolution is applied similarly to correlation. • Note how similar the formulas for correlation and convolution. The only difference is that in the signs of 𝒖 and 𝒗 variables. • Correlation formula has positive signs for 𝒖 and 𝒗 while correlation has negative signs for them. 𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗] Is just changing signs make sense?
  • 44.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 45.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 46.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 47.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 48.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 49.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 50.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 51.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 52.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7
  • 53.
    Correlation Vs. Convolution 𝑮𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 − 𝒖, 𝒋 − 𝒗]𝑮 𝒊, 𝒋 = 𝒖=−𝒌 𝒌 𝒗=−𝒌 𝒌 𝒉 𝒖, 𝒗 𝑭[𝒊 + 𝒖, 𝒋 + 𝒗] Correlation Convolution 13204 458047 09373 .2.4.1 .5.8.3 .9.5.7 .2.4.1 .5.8.3 .9.5.7 -1, 1-1, 0-1, -1 0, 10, 00, -1 1, 11, 01, -1 1, -11, 01, 1 0, -10, 00, 1 -1, -1-1, 0-1, 1 How to simplify convolution?
  • 54.
    Simplifying Convolution .2.4.1 .5.8.3 .9.5.7 1, -11,01, 1 0, -10, 00, 1 -1, -1-1, 0-1, 1 * 13204 458047 09373 .7.5.9 .3.8.5 .1.4.2 13204 458047 09373= -1, 1-1, 0-1, -1 0, 10, 00, -1 1, 11, 01, -1 Just rotate the template with 180 degrees before multiplying by the image. * Applying convolution is similar to correlation except for flipping the template before multiplication.
  • 55.
    Two Many Multiplications& Additions • Assume to remove noise from an image, it should be applied to two filters (filter1 and filter2). Each filter has size of 7x7 pixels and the image is of size 1024x1024 pixels. • A simple approach is to apply filter1 to the image then apply filter2 to the output of filter1. • Too many multiplications and additions due to applying two filters on the image. 1,024 x 1,024 x 49 multiplication and 1,000 x 1,000 x 49 addition for the single filter. 1024x1024 Image Filter1 * Temp. Result Filter2 * Result
  • 56.
    Convolution Associative Property •Using the associative property of convolution, we can reduce the number of multiplications and additions. • To apply two filters f1 and f2 over an image, we can merge the two filters together then apply the convolution between the resultant new filter and the image. • Finally, there is only 1,024 x 1024 x 49 multiplication and addition. (Im * 𝒇 𝟏) * 𝒇 𝟐 = Im * (𝒇 𝟏 * 𝒇 𝟐) For 𝒇 𝟏 * 𝒇 𝟐 = 𝒇 𝟑 Result is Im * 𝒇 𝟑
  • 57.
    Convolution Applications • Convolutionis used to merge signals. • It is used to apply operations like smoothing and filtering images where the primary task is selecting the appropriate filter template or mask. • Convolution can also be used to find gradients of the image.
  • 58.
    Implementing Convolution inPython • The implementation of convolution is identical to correlation except for the new command that rotates the template.
  • 59.
  • 60.
    Image Gradients • Imagegradients can be defined as change of intensity in some direction. • Based on the way gradients were calculated and specifically based on the template/kernel used, gradients can be horizontal (X direction) or vertical (Y direction) in direction. -1-1-1 000 111 Horizontal 10-1 10-1 10-1 Vertical θ = 𝑡𝑎𝑛−1 [ 𝐺 𝑦 𝐺 𝑥 ] 𝐺 = 𝐺 𝑥 + 𝐺 𝑦
  • 61.
    Image Gradient CalculationSteps • Calculate the image gradient in X direction at each pixel. • Calculate the image gradient in Y direction at each pixel. • Calculate the overall gradient for the pixel.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
    Example – MeanFilter •Mean Filter Kernel. 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 𝟏 𝟗 ∗ 58 + 𝟏 𝟗 ∗ 3 + 𝟏 𝟗 ∗ 213 + 𝟏 𝟗 ∗ 185 + 𝟏 𝟗 ∗ 87 + 𝟏 𝟗 ∗ 32 + 𝟏 𝟗 ∗ 70 + 𝟏 𝟗 ∗ 66 + 𝟏 𝟗 ∗ 60 = 85.67 ~ 86 Implement in Python (Deadline next week starting @ 7 Oct. 2017). 1. Mean Smoothing Filter 2. Gaussian Smoothing Filter 3. Sharpening Filter 4. Median Filter