Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The tumour microenvironment in pancreatic cancer — new clinical challenges, but more opportunities

This article has been updated

Abstract

Patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) predominantly receive chemotherapy, and despite initial responses in some patients, most will have disease progression and often dismal outcomes. This lack of clinical effectiveness partly reflects not only cancer cell-intrinsic factors but also the presence of a tumour microenvironment (TME) that precludes access of both systemic therapies and circulating immune cells to the primary tumour, as well as supporting the growth of PDAC cells. Combined with improved preclinical models of PDAC, advances in single-cell spatial multi-omics and machine learning-based models have provided novel methods of untangling the complexities of the TME. In this Review, we focus on the desmoplastic stroma and both the intratumoural and intertumoural heterogeneity of PDAC, with an emphasis on cancer-associated fibroblasts and their surrounding immune cell niches. We describe new approaches in converting the immunologically ‘cold’ PDAC TME into a ‘hot’ TME by priming T cell activation, overcoming T cell exhaustion and unravelling myeloid cell-mediated immunosuppression. Furthermore, we explore integrated targets involving the TME, such as points of convergence among tumour, stromal and immune cell metabolism as well as oncogenic KRAS signalling. Finally, building on our experience with failed clinical trials in the past, we consider how this evolving comprehensive understanding of the TME will ensure future success in developing more effective therapies for patients with PDAC.

Key points

  • Heterogeneity within the pancreatic ductal adenocarcinoma (PDAC) tumour microenvironment (TME) is highlighted by differences in both the structure and cellular origin of fibrillar collagen present within the extracellular matrix, with distinct tumour-promoting and tumour-restraining roles.

  • Given the heterogeneity and plasticity of cancer-associated fibroblasts in the PDAC TME, research efforts have focused on elucidating the specific tumour-permissive and tumour-restrictive functions of these different subpopulations and targeting them with highly specific therapeutic interventions.

  • Cancer-associated fibroblast function is greatly dependent on the specific niche and cellular neighbourhood, and advances in multi-omic, spatial analysis technologies have enabled assessments of the spatial relationships and inference of cellular interactions between neoplastic and stromal components with validation in in vitro models.

  • Therapeutic cancer vaccines are capable of presenting PDAC-associated antigens to the immune system to mount an antitumour effector T cell response, including by converting an immunologically ‘cold’ TME into a ‘hot’ one.

  • Future research efforts should focus on reprogramming immunosuppressive myeloid cells in the immune TME to prevent T cell exhaustion and sustain effector T cell activation.

  • The potential of TME remodelling to bypass dependencies on mutant KRAS supports the further exploration of strategies targeting the TME in combination with, or following KRAS inhibitors to overcome resistance to these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct functions of the tumour-derived and stroma-derived extracellular matrix.
Fig. 2: Intratumoural and intertumoural heterogeneity in the pancreatic ductal adenocarcinoma tumour microenvironment.
Fig. 3: The landscape of cancer-associated fibroblast research in pancreatic ductal adenocarcinoma.
Fig. 4: Priming the tumour microenvironment with activated T cells.
Fig. 5: Reprogramming of immunosuppressive cells within the pancreatic ductal adenocarcinoma tumour microenvironment.
Fig. 6: Metabolic convergence within the pancreatic ductal adenocarcinoma tumour microenvironment.
Fig. 7: KRAS inhibition within the pancreatic ductal adenocarcinoma tumour microenvironment.

Similar content being viewed by others

Change history

  • 13 October 2025

    In the version of the article initially published, the name of peer reviewer P. Phillips appeared incorrectly (as Philips) and has now been corrected in the HTML and PDF versions of the article.

References

  1. Ho, W. J., Jaffee, E. M. & Zheng, L. The tumour microenvironment in pancreatic cancer — clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 17, 527–540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10–45 (2025).

    PubMed  PubMed Central  Google Scholar 

  3. Wang, J. et al. Consensus, debate, and prospective on pancreatic cancer treatments. J. Hematol. Oncol. 17, 92 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Finan, J. M., Guo, Y., Goodyear, S. M. & Brody, J. R. Challenges and opportunities in targeting the complex pancreatic tumor microenvironment. JCO Oncol. Adv. 18, e2400050 (2024).

    Article  Google Scholar 

  5. Ju, Y. et al. Barriers and opportunities in pancreatic cancer immunotherapy. npj Precis. Oncol. 8, 199 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hosein, A. N., Dougan, S. K., Aguirre, A. J. & Maitra, A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat. Cancer 3, 272–286 (2022).

    Article  PubMed  Google Scholar 

  7. Haldar, S. D. & Azad, N. S. Unlocking the promise of RAS inhibition in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 21, 535–536 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bachem, M. G. et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128, 907–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Li, K. Y. et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis. Transl. Med. 6, 6–17 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tjomsland, V. et al. The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin. Dev. Immunol. 2011, 212810 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Perez, V. M., Kearney, J. F. & Yeh, J. J. The PDAC extracellular matrix: a review of the ECM protein composition, tumor cell interaction, and therapeutic strategies. Front. Oncol. 11, 751311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D. et al. The extracellular matrix: a key accomplice of cancer stem cell migration, metastasis formation, and drug resistance in PDAC. Cancers 14, 3998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whatcott, C. J. et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin. Cancer Res. 21, 3561–3568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian, C. et al. Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nat. Commun. 12, 2328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. et al. Type I collagen deletion in —SMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Y. et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 40, 818–834.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steele, N. G. et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Jesus-Acosta, A. et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br. J. Cancer 122, 498–505 (2020).

    Article  PubMed  Google Scholar 

  26. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kemper, M. et al. Integrin alpha-V is an important driver in pancreatic adenocarcinoma progression. J. Exp. Clin. Cancer Res. 40, 214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomas Bort, E. et al. Purinergic GPCR-integrin interactions drive pancreatic cancer cell invasion. eLife 12, e86971 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reader, C. S. et al. The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J. Pathol. 249, 332–342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, L. et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 5031–5052.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez, E. et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun. Biol. 5, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan, S., Brentnall, T. A. & Chen, R. Glycoproteins and glycoproteomics in pancreatic cancer. World J. Gastroenterol. 22, 9288–9299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Provenzano, P. P. & Hingorani, S. R. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br. J. Cancer 108, 1–8 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Carpenter, E. S. et al. Pancreatic cancer-associated fibroblasts: where do we go from here? Cancer Res. 84, 3505–3508 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Caligiuri, G. & Tuveson, D. A. Activated fibroblasts in cancer: perspectives and challenges. Cancer Cell 41, 434–449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  41. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Assouline, B. et al. Senescent cancer-associated fibroblasts in pancreatic adenocarcinoma restrict CD8(+) T cell activation and limit responsiveness to immunotherapy in mice. Nat. Commun. 15, 6162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizutani, Y. et al. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res. 79, 5367–5381 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Veghini, L. et al. Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer. Nat. Commun. 15, 10534 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Krishnamurty, A. T. et al. LRRC15(+) myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1227–1244.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McAndrews, K. M. et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12, 1580–1597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Erkan, M. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008).

    Article  PubMed  Google Scholar 

  53. Fujita, H. et al. α-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas 39, 1254–1262 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Sinn, M. et al. α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study. Br. J. Cancer 111, 1917–1923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mascharak, S. et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep. Med. 4, 101248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mucciolo, G. et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell 42, 101–18.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Donahue, K. L. et al. Oncogenic KRAS-dependent stromal interleukin-33 directs the pancreatic microenvironment to promote tumor growth. Cancer Discov. 14, 1964–1989 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alonso-Curbelo et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alam, A. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40, 153–167.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amisaki, M. et al. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 638, 1076–1084 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Francescone, R. et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11, 446–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Schuth, S. et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. J. Exp. Clin. Cancer Res. 41, 312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guinn, S. et al. Transfer learning reveals cancer-associated fibroblasts are associated with epithelial–mesenchymal transition and inflammation in cancer cells in pancreatic ductal adenocarcinoma. Cancer Res. 84, 1517–1533 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takeuchi, K. et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 42, 113420 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Osuna de la Pena, D. et al. Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nat. Commun. 12, 5623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nguyen, D. T. et al. A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling. Sci. Adv. 5, eaav6789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi, D. et al. Microfluidic organoid cultures derived from pancreatic cancer biopsies for personalized testing of chemotherapy and immunotherapy. Adv. Sci. 11, e2303088 (2024).

    Article  Google Scholar 

  68. Kokkinos, J. et al. Ex vivo culture of intact human patient derived pancreatic tumour tissue. Sci. Rep. 11, 1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Decker-Farrell, A. R., Ma, A., Li, F., Muir, A. & Olive, K. P. Generation and ex vivo culture of murine and human pancreatic ductal adenocarcinoma tissue slice explants. STAR Protoc. 4, 102711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hasselluhn, M. C. et al. Tumor explants elucidate a cascade of paracrine SHH, WNT, and VEGF signals driving pancreatic cancer angiosuppression. Cancer Discov. 14, 348–361 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Francescone, R., Crawford, H. C. & Vendramini-Costa, D. B. Rethinking the roles of cancer-associated fibroblasts in pancreatic cancer. Cell. Mol. Gastroenterol. Hepatol. 17, 737–743 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Froeling, F. E. et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology 141, 1486–1497 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Helms, E. J. et al. Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12, 484–501 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Erkut B. et al. A phase II pilot trial of nivolumab (N) + albumin bound paclitaxel (AP) + paricalcitol (P) + cisplatin (C) + gemcitabine (G) (NAPPCG) in patients with previously untreated metastatic pancreatic ductal adenocarcinoma (PDAC). In Proc. AACR Virtual Special Conference on Pancreatic Cancer (AACR, 2021).

  76. Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bhagat, T. D. et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. eLife 8, e50663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Datta, J. et al. Combined MEK and STAT3 inhibition uncovers stromal plasticity by enriching for cancer-associated fibroblasts with mesenchymal stem cell-like features to overcome immunotherapy resistance in pancreatic cancer. Gastroenterology 163, 1593–1612 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Xiao, Q. et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res. 76, 5395–5404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pereira, B. A. et al. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. Sci. Adv. 10, eadl1197 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grunwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Shiau, C. et al. Spatially resolved analysis of pancreatic cancer identifies therapy-associated remodeling of the tumor microenvironment. Nat. Genet. 56, 2466–2478 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Braxton, A. M. et al. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 629, 679–687 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mo, C. K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Poulie, C. B. M. et al. Next generation fibroblast activation protein (FAP) targeting PET tracers — the tetrazine ligation allows an easy and convenient way to (18)F-labeled (4-quinolinoyl)glycyl-2-cyanopyrrolidines. Eur. J. Med. Chem. 262, 115862 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Pentimalli, T. M. et al. Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment. Cell Syst. 16, 101261 (2025).

    Article  CAS  PubMed  Google Scholar 

  89. Zheng, L. et al. Vaccine-induced intratumoral lymphoid aggregates correlate with survival following treatment with a neoadjuvant and adjuvant vaccine in patients with resectable pancreatic adenocarcinoma. Clin. Cancer Res. 27, 1278–1286 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Lutz, E. et al. A lethally irradiated allogeneic granulocyte–macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann. Surg. 253, 328–335 (2011).

    Article  PubMed  Google Scholar 

  91. Zheng, L. et al. Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS ONE 6, e19390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thomas, A. M. et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med. 200, 297–306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsujikawa, T. et al. Evaluation of cyclophosphamide/GVAX pancreas followed by listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clin. Cancer Res. 26, 3578–3588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, A. A. et al. A phase II study of allogeneic GM-CSF-transfected pancreatic tumor vaccine (GVAX) with ipilimumab as maintenance treatment for metastatic pancreatic cancer. Clin. Cancer Res. 26, 5129–5139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Le, D. T. et al. Randomized phase II study of the safety, efficacy and immune response of GVAX pancreas (with cyclophosphamide) and CRS-207 with or without nivolumab in patients with previously treated metastatic pancreatic adenocarcinoma (STELLAR). J. ImmunoTher. Cancer 3, P155 (2015).

    Article  PubMed Central  Google Scholar 

  96. Le, D. T. et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. 33, 1325–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lutz, E. R. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2, 616–631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, K. et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell. 40, 1374–1391.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Soares, K. C. et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother. 38, 1–11 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oka, Y. et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA 101, 13885–13890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramanathan, R. K. et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother. 54, 254–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Geller, B. A. et al. Immunity to MUC1 in pancreatic and breast cancer. J. Clin. Oncol. 25, 21166 (2007).

    Article  Google Scholar 

  103. Yanagisawa, R. et al. WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase I study. Anticancer Res. 38, 2217–2225 (2018).

    CAS  PubMed  Google Scholar 

  104. Shindo, Y. et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J. Transl. Med. 12, 175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sidiropoulos, D. N. et al. Neoadjuvant immunotherapy promotes the formation of mature tertiary lymphoid structures in a remodeled pancreatic tumor microenvironment. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-25-0387 (2025).

  106. Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okada, M., Shimizu, K. & Fujii, S. I. Identification of neoantigens in cancer cells as targets for immunotherapy. Int. J. Mol. Sci. 23, 2594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fotakis, G., Trajanoski, Z. & Rieder, D. Computational cancer neoantigen prediction: current status and recent advances. Immunooncol. Technol. 12, 100052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sethna, Z. et al. RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 639, 1042–1051 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cafri, G. et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10, 449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kubuschok, B. et al. Naturally occurring T-cell response against mutated p21 Ras oncoprotein in pancreatic cancer. Clin. Cancer Res. 12, 1365–1372 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Jung, S. & Schluesener, H. J. Human T lymphocytes recognize a peptide of single point-mutated, oncogenic Ras proteins. J. Exp. Med. 173, 273–276 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Abrams, S. I. et al. Generation of stable CD4+ and CD8+ T cell lines from patients immunized with ras oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol. 182, 137–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Chaft, J. E. et al. Phase II study of the GI-4000 KRAS vaccine after curative therapy in patients with stage I–III lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation. Clin. Lung Cancer 15, 405–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Gjertsen, M. K., Bjorheim, J., Saeterdal, I., Myklebust, J. & Gaudernack, G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int. J. Cancer 72, 784–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Gjertsen, M. K. et al. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346, 1399–1400 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Surana, R. et al. Phase I study of mesenchymal stem cell (MSC)-derived exosomes with KRASG12D siRNA in patients with metastatic pancreatic cancer harboring a KRASG12D mutation. J. Clin. Oncol. 40, TPS633 (2022).

    Article  Google Scholar 

  124. Bear, A. S. et al. Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. J. Clin. Invest. 134, e175790 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rappaport, A. R. et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 30, 1013–1022 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. 30, 531–542 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Haldar, S. D. et al. A phase I study of a mutant KRAS-targeted long peptide vaccine combined with ipilimumab/nivolumab in resected pancreatic cancer and MMR-proficient metastatic colorectal cancer. J. Clin. Oncol. 41, TPS814 (2023).

    Article  Google Scholar 

  128. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fujiwara, K. et al. Direct identification of HLA class I and class II-restricted T cell epitopes in pancreatic cancer tissues by mass spectrometry. J. Hematol. Oncol. 15, 154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ehx, G. et al. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 54, 737–752.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Erhard, F. et al. Improved Ribo-seq enables identification of cryptic translation events. Nat. Methods 15, 363–366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pearson, H. et al. MHC class I-associated peptides derive from selective regions of the human genome. J. Clin. Invest. 126, 4690–4701 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rospo, G. et al. Non-canonical antigens are the largest fraction of peptides presented by MHC class I in mismatch repair deficient murine colorectal cancer. Genome Med. 16, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Erhard, F., Dolken, L., Schilling, B. & Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosenberg, S. A. et al. Identification of BING-4 cancer antigen translated from an alternative open reading frame of a gene in the extended MHC class II region using lymphocytes from a patient with a durable complete regression following immunotherapy. J. Immunol. 168, 2402–2407 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Laumont, C. M. & Perreault, C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell. Mol. Life Sci. 75, 607–621 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Laumont, C. M. et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Ely, Z. A. et al. 1408 Non-canonical peptide sources broaden the landscape of targetable antigens in pancreatic cancer. J. ImmunoTher. Cancer 11, A1566 (2023).

    Google Scholar 

  142. Zhang, T. et al. Comparison of shared class I HLA-bound non-canonical neoepitopes between normal and neoplastic tissues of pancreatic adenocarcinoma. Clin. Cancer Res. (2024).

  143. Schafer, D. et al. Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat. Commun. 12, 1453 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Smaglo, B. G. et al. A phase I trial targeting advanced or metastatic pancreatic cancer using a combination of standard chemotherapy and adoptively transferred nonengineered, multiantigen specific T cells in the first-line setting (TACTOPS). J. Clin. Oncol. 38, 4622 (2020).

    Article  Google Scholar 

  145. Cao, L. L. & Kagan, J. C. Targeting innate immune pathways for cancer immunotherapy. Immunity 56, 2206–2217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hu, A. et al. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct. Target. Ther. 9, 68 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yi, M. et al. Exploiting innate immunity for cancer immunotherapy. Mol. Cancer 22, 187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, Y., Lin, J., Zhao, Y., Ma, X. & Yi, H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J. Zhejiang Univ. Sci. B 22, 609–632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Muresan, X. M., Bouchal, J., Culig, Z. & Soucek, K. Toll-like receptor 3 in solid cancer and therapy resistance. Cancers 12, 3227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mehrotra, S. et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J. Hematol. Oncol. 10, 82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. El Haddaoui, H. et al. Rintatolimod (Ampligen((R))) enhances numbers of peripheral B cells and is associated with longer survival in patients with locally advanced and metastasized pancreatic cancer pre-treated with FOLFIRINOX: a single-center named patient program. Cancers 14, 1377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. van Eijck, C. W. F. et al. Rintatolimod in advanced pancreatic cancer enhances antitumor immunity through dendritic cell-mediated T-cell responses. Clin. Cancer Res. 30, 3447–3458 (2024).

    Article  PubMed  Google Scholar 

  153. Klute, K. et al. Phase 2 randomized study of rintatolimod following FOLFIRINOX in patients with locally advanced pancreatic adenocarcinoma. J. Clin. Oncol. 42, TPS4214 (2024).

    Article  Google Scholar 

  154. Schon, M. P. & Schon, M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 27, 190–199 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Pernot, S. et al. First in class TLR7/8 agonist BDB001 combined with atezolizumab and stereotactic body radiation therapy in patients with advanced pancreatic adenocarcinoma: results from the AGADIR study. J. Clin. Oncol. 41, 4153 (2023).

    Article  Google Scholar 

  156. Carbone, C. et al. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J. ImmunoTher. Cancer 9, e002876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, S. et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E7240–E7249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee, M. S. et al. 647 PERIO-03: pressure enabled intrapancreatic delivery of SD-101 with checkpoint blockade for locally advanced pancreatic adenocarcinoma — initial safety and feasibility experience. J. ImmunoTher. Cancer 11, A739 (2023).

    Google Scholar 

  159. Chen, J., Huynh, J., Monjazeb, A., Cho, M. T. & Kim, E. J.-H. A pilot study of intratumoral SD-101 (toll-like receptor 9 agonist), nivolumab, and radiotherapy for treatment of chemotherapy-refractory metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, TPS782 (2020).

    Article  Google Scholar 

  160. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Samson, N. & Ablasser, A. The cGAS–STING pathway and cancer. Nat. Cancer 3, 1452–1463 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Jing, W. et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J. ImmunoTher. Cancer 7, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Huang, C. et al. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: a comprehensive review of strategies and future perspectives. Mater. Today Bio 23, 100839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liang, J.-L. et al. Targeting activation of cGAS–STING signaling pathway by engineered biomaterials for enhancing cancer immunotherapy. Mater. Today 78, 251–296 (2024).

    Article  CAS  Google Scholar 

  166. Li, K. et al. Overcome the challenge for intratumoral injection of STING agonist for pancreatic cancer by systemic administration. J. Hematol. Oncol. 17, 62 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Waltzman, R. J. et al. Preliminary results of a phase 1 study of Decoy20, an intravenous, killed, multiple immune receptor agonist bacterial product in patients with advanced solid tumors. J. Clin. Oncol. 42, 2583 (2024).

    Article  Google Scholar 

  168. Beatty, G. L. & Jaffee, E. M. Exogenous or in situ vaccination to trigger clinical responses in pancreatic cancer. Carcinogenesis 45, 826–835 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Chen, I. M. et al. Randomized phase II study of nivolumab with or without ipilimumab combined with stereotactic body radiotherapy for refractory metastatic pancreatic cancer (CheckPAC). J. Clin. Oncol. 40, 3180–3189 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Parikh, A. R. et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat. Cancer 2, 1124–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xie, C. et al. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res. 26, 2318–2326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee, V. et al. A phase 2 study of cyclophosphamide (CY), GVAX, pembrolizumab (Pembro), and stereotactic body radiation (SBRT) in patients (pts) with locally advanced pancreas cancer (LAPC). J. Clin. Oncol. 39, 4134 (2021).

    Article  Google Scholar 

  173. Wang, J. et al. Neoadjuvant radioimmunotherapy in pancreatic cancer enhances effector T cell infiltration and shortens their distances to tumor cells. Sci. Adv. 10, eadk1827 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. 11, 2014–2031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Muth, S. T. et al. CD137 agonist-based combination immunotherapy enhances activated, effector memory T cells and prolongs survival in pancreatic adenocarcinoma. Cancer Lett. 499, 99–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Heumann, T. et al. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat. Commun. 14, 3650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ino, Y. et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer 108, 914–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Reid, M. D. et al. Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod. Pathol. 24, 1612–1619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sierzega, M. et al. Preoperative neutrophil–lymphocyte and lymphocyte–monocyte ratios reflect immune cell population rearrangement in resectable pancreatic cancer. Ann. Surg. Oncol. 24, 808–815 (2017).

    Article  PubMed  Google Scholar 

  180. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2‘ TAN. Cancer Cell. 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lang, S. et al. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin. Cancer Res. 24, 4834–4844 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Ley, K. et al. Neutrophils: new insights and open questions. Sci. Immunol. 3, eaat4579 (2018).

    Article  PubMed  Google Scholar 

  184. Giese, M. A., Hind, L. E. & Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 133, 2159–2167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dias Carvalho, P. et al. KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer Res. 78, 7–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang, Y. et al. Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology 155, 210–223.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Ronchetti, L. et al. Neutrophil extracellular traps in cancer: not only catching microbes. J. Exp. Clin. Cancer Res. 40, 231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Gungor, N. et al. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 25, 149–154 (2010).

    Article  PubMed  Google Scholar 

  193. Yang, J. et al. Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms. Cancer Immunol. Res. 6, 1186–1198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jin, Y., Christenson, E. S., Zheng, L. & Li, K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev. Clin. Immunol. 20, 945–958 (2024).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, T. T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF–PD-L1 pathway. Gut 66, 1900–1911 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Waugh, D. J. & Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14, 6735–6741 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Li, P. et al. Anti-IL-8 antibody activates myeloid cells and potentiates the anti-tumor activity of anti-PD-1 antibody in the humanized pancreatic cancer murine model. Cancer Lett. 539, 215722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. De Filippo, K. & Rankin, S. M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest. 48, e12949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Chen, J. et al. CREB1-driven CXCR4hi neutrophils promote skin inflammation in mouse models and human patients. Nat. Commun. 14, 5894 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yamada, M. et al. The increase in surface CXCR4 expression on lung extravascular neutrophils and its effects on neutrophils during endotoxin-induced lung injury. Cell. Mol. Immunol. 8, 305–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Blair, A. B. et al. Dual stromal targeting sensitizes pancreatic adenocarcinoma for anti-programmed cell death protein 1 therapy. Gastroenterology 163, 1267–1280.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Shin, S. M. et al. Abstract 2270: combination of CXCR4 antagonist and anti-PD1 therapy results in significant mobilization and increased infiltration of myeloid cells into the metastatic liver microenvironment of PDAC. Cancer Res. 83, 2270 (2023).

    Article  Google Scholar 

  203. Hidalgo, M. et al. Abstract CT177: a multi-center phase 2a trial of the CXCR4 inhibitor motixafortide (BL-8040) (M) in combination with pembrolizumab (P) and chemotherapy (C), in patients with metastatic pancreatic adenocarcinoma (mPDAC). Cancer Res. 81, CT177 (2021).

    Article  Google Scholar 

  204. Oh, D.-Y. et al. Phase Ib/II open-label, randomized evaluation of 2L atezolizumab (atezo) + BL-8040 versus control in MORPHEUS-pancreatic ductal adenocarcinoma (M-PDAC) and MORPHEUS-gastric cancer (M-GC). J. Clin. Oncol. 38, 712 (2020).

    Article  Google Scholar 

  205. Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Mahiddine, K. et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J. Clin. Invest. 130, 389–403 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Li, J. et al. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun. Signal. 21, 86 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lodge, K. M., Cowburn, A. S., Li, W. & Condliffe, A. M. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int. J. Mol. Sci. 21, 1183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tao, J. et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol. 14, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kemp, S. B., Pasca di Magliano, M. & Crawford, H. C. Myeloid cell mediated immune suppression in pancreatic cancer. Cell. Mol. Gastroenterol. Hepatol. 12, 1531–1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Pergamo, M. & Miller, G. Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Ther. 24, 100–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bayne, L. J. et al. Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21, 822–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stromnes, I. M. et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63, 1769–1781 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Bianchi, A. et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer. Cancer Discov. 13, 1428–1453 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Fukuda et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Caronni, N. et al. IL-1beta(+) macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 623, 415–422 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Lee, B. Y. et al. Heterocellular OSM-OSMR signalling reprograms fibroblasts to promote pancreatic cancer growth and metastasis. Nat. Commun. 12, 7336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Zhang, J. et al. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep. 42, 112620 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Xiong, C. et al. Tumor-associated macrophages promote pancreatic ductal adenocarcinoma progression by inducing epithelial-to-mesenchymal transition. Aging 13, 3386–3404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Werba, G. et al. Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. Nat. Commun. 14, 797 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kemp, S. B. et al. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Sci. Alliance 4, e202000935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Esparza-Baquer, A. et al. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut 70, 1345–1361 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Zhong, J. et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell. 42, 968–984.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  234. Yang, D. et al. TREM2 depletion in pancreatic cancer elicits pathogenic inflammation and accelerates tumor progression via enriching IL-1b(+) macrophages. Gastroenterology 168, 1153–1169 (2025).

    Article  CAS  PubMed  Google Scholar 

  235. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Article  CAS  PubMed  Google Scholar 

  237. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lim, S. Y., Yuzhalin, A. E., Gordon-Weeks, A. N. & Muschel, R. J. Targeting the CCL2–CCR2 signaling axis in cancer metastasis. Oncotarget 7, 28697–28710 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. N. Drugs 38, 800–811 (2020).

    Article  CAS  Google Scholar 

  241. Wang, J. et al. CCR2/CCR5 inhibitor permits the radiation-induced effector T cell infiltration in pancreatic adenocarcinoma. J. Exp. Med. 219, e20211631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Christenson, E. et al. Nivolumab and a CCR2/CCR5 dual antagonist (BMS-813160) with or without GVAX for locally advanced pancreatic ductal adenocarcinomas: results of phase I study. J. Clin. Oncol. 41, 730 (2023).

    Article  Google Scholar 

  243. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Eliopoulos, A. G. et al. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol. Cell. Biol. 20, 5503–5515 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lim, C. Y., Chang, J. H., Lee, W. S., Kim, J. & Park, I. Y. CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 and suppress human pancreatic cancer in organotypic slice cultures. Gut Liver 16, 645–659 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  247. Ho, P. C. et al. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 74, 3205–3217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Van Laethem, J. L. et al. Combining CD40 agonist mitazalimab with mFOLFIRINOX in previously untreated metastatic pancreatic ductal adenocarcinoma (OPTIMIZE-1): a single-arm, multicentre phase 1b/2 study. Lancet Oncol. 25, 853–864 (2024).

    Article  PubMed  Google Scholar 

  251. O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    Article  PubMed  Google Scholar 

  252. Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Baer, J. M. et al. Fibrosis induced by resident macrophages has divergent roles in pancreas inflammatory injury and PDAC. Nat. Immunol. 24, 1443–1457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Etzerodt, A. et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 217, e20191869 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nywening, T. M. et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67, 1112–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 6, 75 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Schmid, M. C. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 9, 5379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Panni, R. Z. et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl. Med. 11, eaau9240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. DeNardo, D. G., Galkin, A., Dupont, J., Zhou, L. & Bendell, J. GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J. ImmunoTher. Cancer 9, e003005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Rasco, D. W. et al. A phase I/II study of GB1275, a first-in-class oral CD11b modulator, alone, and combined with pembrolizumab in specified advanced solid tumors or with chemotherapy in metastatic pancreatic cancer (KEYNOTE-A36). J. Clin. Oncol. 38, 3085 (2020).

    Article  Google Scholar 

  263. Mota Reyes, C. et al. Regulatory T cells in pancreatic cancer: of mice and men. Cancers 14, 4582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    Article  CAS  PubMed  Google Scholar 

  265. Tang, Y. et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS ONE 9, e91551 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Jang, J. E. et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 20, 558–571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Zhang, Y. et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 10, 422–439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Le, D. T. & Jaffee, E. M. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72, 3439–3444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Shan, F., Somasundaram, A., Bruno, T. C., Workman, C. J. & Vignali, D. A. A. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 8, 944–961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Jacobs, J. F. et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16, 5067–5078 (2010).

    Article  CAS  PubMed  Google Scholar 

  271. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gambardella, V. et al. Safety and antitumor activity of a novel aCD25 Treg depleter RG6292 as a single agent and in combination with atezolizumab in patients with solid tumors. Cancer Res. Commun. 5, 422–432 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Marshall, L. A. et al. Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. J. ImmunoTher. Cancer 8, e000764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Kidani, Y. et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc. Natl Acad. Sci. USA 119, e2114282119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Van Damme, H. et al. Therapeutic depletion of CCR8(+) tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy. J. ImmunoTher. Cancer 9, e001749 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Tay, C., Tanaka, A. & Sakaguchi, S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 41, 450–465 (2023).

    Article  CAS  PubMed  Google Scholar 

  277. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Knorr, D. A. et al. FcgammaRIIB is an immune checkpoint limiting the activity of Treg-targeting antibodies in the tumor microenvironment. Cancer Immunol. Res. 12, 322–333 (2024).

    Article  CAS  PubMed  Google Scholar 

  279. Gan, X. et al. An anti-CTLA-4 heavy chain-only antibody with enhanced T(reg) depletion shows excellent preclinical efficacy and safety profile. Proc. Natl Acad. Sci. USA 119, e2200879119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Chand, D. et al. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody, is effective against tumors poorly responsive to conventional immunotherapy. Cancer Discov. 14, 2407–2429 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Xu, Y. et al. CLDN18.2 BiTE engages effector and regulatory T cells for antitumor immune response in preclinical models of pancreatic cancer. Gastroenterology 165, 1219–1232 (2023).

    Article  CAS  PubMed  Google Scholar 

  282. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Encarnacion-Rosado, J. & Kimmelman, A. C. Harnessing metabolic dependencies in pancreatic cancers. Nat. Rev. Gastroenterol. Hepatol. 18, 482–492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Wu, H. et al. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis. 15, 553 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  286. De Santis, M. C., Bockorny, B., Hirsch, E., Cappello, P. & Martini, M. Exploiting pancreatic cancer metabolism: challenges and opportunities. Trends Mol. Med. 30, 592–604 (2024).

    Article  PubMed  Google Scholar 

  287. Dong, C., Zhao, Y., Han, Y., Li, M. & Wang, G. Targeting glutamine metabolism crosstalk with tumor immune response. Biochim. Biophys. Acta Rev. Cancer 1880, 189257 (2024).

    Article  PubMed  Google Scholar 

  288. Chanmee, T. et al. Hyaluronan production regulates metabolic and cancer stem-like properties of breast cancer cells via hexosamine biosynthetic pathway-coupled HIF-1 signaling. J. Biol. Chem. 291, 24105–24120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Sharma, N. S. et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 130, 451–465 (2020).

    Article  CAS  PubMed  Google Scholar 

  290. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Wu, W. C. et al. Immunosuppressive immature myeloid cell generation is controlled by glutamine metabolism in human cancer. Cancer Immunol. Res. 7, 1605–1618 (2019).

    Article  CAS  PubMed  Google Scholar 

  292. Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Guo, C. et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature 620, 200–208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Lobel, G. P. et al. Glutamine is critical for the maintenance of type 1 conventional dendritic cells in normal tissue and the tumor microenvironment. Proc. Natl Acad. Sci. USA 121, e2412157121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Parker, S. J. et al. Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discov. 10, 1018–1037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Zhang, Y. et al. Macropinocytosis in cancer-associated fibroblasts is dependent on CaMKK2/ARHGEF2 signaling and functions to support tumor and stromal cell fitness. Cancer Discov. 11, 1808–1825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Su, H. et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome. Nature 610, 366–372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Nwosu, Z. C. et al. Uridine-derived ribose fuels glucose-restricted pancreatic cancer. Nature 618, 151–158 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Sherman, M. H. et al. Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc. Natl Acad. Sci. USA 114, 1129–1134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Zhang, M. et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct. Target. Ther. 6, 366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  305. Humpton, T. J. et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 9, 1268–1287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Yang, A. et al. Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8, 276–287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Boone, B. A. et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann. Surg. Oncol. 22, 4402–4410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Zeh, H. J. et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin. Cancer Res. 26, 3126–3134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Karasic, T. B. et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5, 993–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  312. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Oyama, K. et al. Combined autophagy inhibition and dendritic cell recruitment induces antitumor immunity and enhances immune checkpoint blockade sensitivity in pancreatic cancer. Cancer Res. 84, 4214–4232 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Qin, C. et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol. Cancer 19, 50 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  316. Okumura, T. et al. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget 8, 18280–18295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Guo, D., Ye, L., Wu, W., Yu, X. & Jin, K. Novel strategy for oncogenic alteration-induced lipid metabolism reprogramming in pancreatic cancer. Acta Biochim. Biophys. Sin. 55, 923–937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Patra, K. C. et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat. Cell Biol. 20, 811–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Bandi, D. S. R., Sarvesh, S., Farran, B., Nagaraju, G. P. & El-Rayes, B. F. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: insights and future directions. Cytokine Growth Factor Rev. 71-72, 26–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  320. Auciello, F. R. et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9, 617–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Wei, J., Raynor, J., Nguyen, T. L. & Chi, H. Nutrient and metabolic sensing in T cell responses. Front. Immunol. 8, 247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    Article  CAS  PubMed  Google Scholar 

  323. Cham, C. M., Driessens, G., O’Keefe, J. P. & Gajewski, T. F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38, 2438–2450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Siska, P. J. & Rathmell, J. C. T cell metabolic fitness in antitumor immunity. Trends Immunol. 36, 257–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Tang, Y., Chen, Z., Zuo, Q. & Kang, Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell. Mol. Immunol. 21, 1215–1230 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Zhang, S., Lv, K., Liu, Z., Zhao, R. & Li, F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov. 10, 39 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Ou, Z. L. et al. Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: role of circ_0000977/miR-153 axis. RNA Biol. 16, 1592–1603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Lu, Y., Hu, J., Sun, W., Duan, X. & Chen, X. Hypoxia-mediated immune evasion of pancreatic carcinoma cells. Mol. Med. Rep. 11, 3666–3672 (2015).

    Article  CAS  PubMed  Google Scholar 

  330. Mello, A. M. et al. Hypoxia promotes an inflammatory phenotype of fibroblasts in pancreatic cancer. Oncogenesis 11, 56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zhao, W. et al. ‘Double-edged sword’ effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol. Res. 72, 301–307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re8 (2015).

    PubMed  Google Scholar 

  333. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345.e22 (2019).

    Article  CAS  PubMed  Google Scholar 

  334. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Jeong, Y. et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 7, 86–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  336. Wang, H. et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci. Transl. Med. 8, 334ra51 (2016).

    PubMed  Google Scholar 

  337. Shah, R., Ibis, B., Kashyap, M. & Boussiotis, V. A. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism 151, 155747 (2024).

    Article  CAS  PubMed  Google Scholar 

  338. Kraaij, M. D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 17686–17691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Halbrook, C. J. et al. Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells. Nat. Cancer 3, 1386–1403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Daemen, A. et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl Acad. Sci. USA 112, E4410–E4417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Varghese, A. M. et al. Clinicogenomic landscape of pancreatic adenocarcinoma identifies KRAS mutant dosage as prognostic of overall survival. Nat. Med. 31, 466–477 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  343. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  344. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Zdanov, S. et al. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol. Res. 4, 354–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Ischenko, I. et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat. Commun. 12, 1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Papke, B. & Der, C. J. Drugging RAS: know the enemy. Science 355, 1158–1163 (2017).

    Article  CAS  PubMed  Google Scholar 

  350. Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Vasta, J. D. et al. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat. Chem. Biol. 18, 596–604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Janne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRAS(G12C) mutation. N. Engl. J. Med. 387, 120–131 (2022).

    Article  CAS  PubMed  Google Scholar 

  355. Sacher, A. et al. Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. N. Engl. J. Med. 389, 710–721 (2023).

    Article  CAS  PubMed  Google Scholar 

  356. Hollebecque, A. et al. Efficacy and safety of LY3537982, a potent and highly selective KRAS G12C inhibitor in KRAS G12C-mutant GI cancers: results from a phase 1 study. J. Clin. Oncol. 42, 94 (2024).

    Article  Google Scholar 

  357. Li, J. et al. Preliminary activity and safety results of KRAS G12C inhibitor glecirasib (JAB-21822) in patients with pancreatic cancer and other solid tumors. J. Clin. Oncol. 42, 604 (2024).

    Article  CAS  Google Scholar 

  358. Bekaii-Saab, T. S. et al. Adagrasib in advanced solid tumors harboring a KRAS(G12C) mutation. J. Clin. Oncol. 41, 4097–4106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Strickler, J. H. et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N. Engl. J. Med. 388, 33–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  360. Luo, J. KRAS mutation in pancreatic cancer. Semin. Oncol. 48, 10–18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).

    Article  CAS  PubMed  Google Scholar 

  362. Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).

    Article  CAS  PubMed  Google Scholar 

  363. Kemp, S. B. et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13, 298–311 (2023).

    Article  CAS  PubMed  Google Scholar 

  364. Ji, X., Li, Y., Kong, X., Chen, D. & Lu, J. Discovery of prodrug of MRTX1133 as an oral therapy for cancers with KRAS(G12D) mutation. ACS Omega 8, 7211–7221 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Zhou, C. et al. LBA33 a first-in-human phase I study of a novel KRAS G12D inhibitor HRS-4642 in patients with advanced solid tumors harboring KRAS G12D mutation. Ann. Oncol. 34, S1273 (2023).

    Article  Google Scholar 

  366. Zhou, C. et al. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell 42, 1286–1300.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  367. Yang, X. et al. Abstract 6512: BPI-501836: a highly potent small molecule inhibitor targeting KRASG12D mutation. Cancer Res. 84, 6512 (2024).

    Article  Google Scholar 

  368. Park, W. et al. 608O preliminary safety and clinical activity of ASP3082, a first-in-class, KRAS G12D selective protein degrader in adults with advanced pancreatic (PC), colorectal (CRC), and non-small cell lung cancer (NSCLC). Ann. Oncol. 5, S486–S487 (2024).

    Article  Google Scholar 

  369. Holderfield, M. et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy. Nature 629, 919–926 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Wasko, U. N. et al. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 629, 927–936 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Jiang, J. et al. Translational and therapeutic evaluation of RAS-GTP inhibition by RMC-6236 in RAS-driven cancers. Cancer Discov. 14, 994–1017 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Kumarasamy, V. et al. The extracellular niche and tumor microenvironment enhance KRAS inhibitor efficacy in pancreatic cancer. Cancer Res. 84, 1115–1132 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Mahadevan, K. K. et al. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8(+) T cells. Dev. Cell 58, 1562–1577.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Mahadevan, K. K. et al. KRAS(G12D) inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells. Cancer Cell 41, 1606–1620.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Yeh, C., Park, W. & Yaeger, R. KRAS(G12D) inhibition in pancreatic cancer: Fas expression facilitates immune clearance. Dev. Cell 58, 1515–1516 (2023).

    Article  CAS  PubMed  Google Scholar 

  376. Isermann, T., Sers, C., Der, C. J. & Papke, B. KRAS inhibitors: resistance drivers and combinatorial strategies. Trends Cancer 11, 91–116 (2025).

    Article  CAS  PubMed  Google Scholar 

  377. Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Dilly, J. et al. Mechanisms of resistance to oncogenic KRAS inhibition in pancreatic cancer. Cancer Discov. 14, 2135–2161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Marasco, M. & Misale, S. The far side of resistance to RAS inhibitors. Cancer Discov. 14, 2018–2020 (2024).

    Article  CAS  PubMed  Google Scholar 

  380. Singhal, A. et al. A classical epithelial state drives acute resistance to KRAS inhibition in pancreatic cancer. Cancer Discov. 14, 2122–2134 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Singh, A. et al. A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Genovese, G. et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature 542, 362–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Hou, P. et al. USP21 deubiquitinase elevates macropinocytosis to enable oncogenic KRAS bypass in pancreatic cancer. Genes Dev. 35, 1327–1332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Hou, P. et al. Tumor microenvironment remodeling enables bypass of oncogenic KRAS dependency in pancreatic cancer. Cancer Discov. 10, 1058–1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Liu, Y. et al. Combined KRAS inhibition and immune therapy generates durable complete responses in an autochthonous PDAC model. Cancer Discov. 15, 162–178 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Osipov, A. et al. The molecular twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients. Nat. Cancer 5, 299–314 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of L.Z. is supported by National Institutes of Health grants R01CA169702, R01CA197296 and P01CA247886; National Cancer Institute Specialized Programs of Research Excellence in Gastrointestinal Cancers grant P50 CA062924; Sidney Kimmel Comprehensive Cancer Center grant P30 CA006973 and Mays Cancer Center grant P30 CA054174.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.K., K.W.Z. and L.Z. researched data for the manuscript. H.-C.K. and L.Z. made substantial contributions to discussions of content. H.-C.K., J.W.Z. and L.Z. wrote the manuscript and reviewed and/or edited before submission.

Corresponding author

Correspondence to Lei Zheng.

Ethics declarations

Competing interests

L.Z. has acted as a consultant and/or adviser of Akrevia/Xilio, Alphamab, Amberstone, Ambrx Biosion, Clinicaltrial Option, Duo Oncology, Fortress Biotech, Histosonics, Mingruizhiyao, NovaRock, QED and Tavotek, has received research funding from Abmeta, AstraZeneca, Bristol-Meyer Squibb and Merck and holds shares in Alphamab, Amberstone, Cellaration and Mingruizhiyao. J.W.Z. has received research funding from Roche Genentech. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Phillips, who co-reviewed with G. Sharbeen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, HC., Zheng, K.W., Zimmerman, J.W. et al. The tumour microenvironment in pancreatic cancer — new clinical challenges, but more opportunities. Nat Rev Clin Oncol (2025). https://doi.org/10.1038/s41571-025-01077-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-025-01077-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer