Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical relevance of extracellular vesicles in cancer — therapeutic and diagnostic potential

Abstract

Extracellular vesicles (EVs) encompass a multitude of lipid bilayer-delimited particles, of which exosomes are the most widely studied. Bidirectional cell–cell communications via EVs have a pivotal role in the physiology of multicellular organisms. EVs carry biological cargoes (including proteins, RNA, DNA, lipids and metabolites) capable of mediating a range of pleiotropic cellular functions. Over the past decade, EVs released by cancer cells (onco-EVs) have been shown to promote cancer progression including tumour outgrowth and metastatic dissemination. Furthermore, the innate ability of EVs to protect vulnerable molecular cargoes (such as RNA, DNA or proteins) from enzymatic degradation, their presence in most biofluids and the ability to transverse biological barriers to reach distant organs make them ideal targeted drug delivery systems, including in patients with cancer. Many of these properties also support investigations of EVs as biomarkers with potential roles in both diagnosis and treatment monitoring. In this Review, we describe advances in the development of EVs as cancer therapeutics or biomarkers, including cancer vaccines, targeted drug delivery systems and immunotherapies, as well as potential roles in early cancer detection, diagnosis and clinical management. We also describe the potential of emerging technologies to support further discoveries as well as the clinical translation of EVs into diagnostic and therapeutic clinical tools. We highlight the potential of single-EV and onco-EV detection and discuss how advances in multi-omic and artificial intelligence-enabled integration are providing new biological insights and driving clinical translation.

Key points

  • Extracellular vesicles (EVs) are directly released from cancer cells and thus provide a direct but accessible source of information on tumour biology with potential for implementation as biomarkers to guide the management of patients with cancer.

  • EVs released from cancer cells are able to interact with the tumour microenvironment and with non-malignant cells at distant anatomical locations, thus enabling the progression and metastatic dissemination of cancer.

  • EV-mediated cell–cell communication and cargo transfer between tumour and non-tumour cells are involved in all stages of cancer — from development to metastatic dissemination and modulation of the host immune response.

  • EVs can be engineered and have potential clinical utility as next-generation drug delivery platforms for cancer therapeutics as well as a potential role as cancer vaccines or for the delivery of immunotherapies.

  • Thus far, the clinical development and implementation of EV-based biomarkers or therapeutics have been limited owing to various technical challenges.

  • Technological advances and improved integration of omics and other technologies are expected to continue to advance the clinical implementation of therapeutics or diagnostics involving EVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Onco-extracellular vesicles as diagnostic and therapeutic targets.
Fig. 2: Extracellular vesicle biogenesis and heterogeneity.
Fig. 3: Cancer hallmarks of onco-extracellular vesicles.
Fig. 4: Engineering extracellular vesicles for cancer-targeted therapy.
Fig. 5: Cancer extracellular vesicles as diagnostic–prognostic platforms.

Similar content being viewed by others

References

  1. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, R. et al. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greening, D. W. & Simpson, R. J. Understanding extracellular vesicle diversity — current status. Expert Rev. Proteom. 15, 887–910 (2018).

    Article  CAS  Google Scholar 

  6. van Niel, G. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

    Article  PubMed  Google Scholar 

  7. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kalluri, R. & McAndrews, K. M. The role of extracellular vesicles in cancer. Cell 186, 1610–1626 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dou, X., Feng, C., Li, J., Jiang, E. & Shang, Z. Extracellular vesicle-mediated crosstalk in tumor microenvironment dominates tumor fate. Trends Cell Biol. 35, 230–247 (2025).

    Article  CAS  PubMed  Google Scholar 

  13. Moller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer 20, 697–709 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, M. A. et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 9, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greening, D. W., Xu, R., Ale, A., Hagemeyer, C. E. & Chen, W. Extracellular vesicles as next generation immunotherapeutics. Semin. Cancer Biol. 90, 73–100 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, E. et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. eBioMedicine 67, 103365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lucotti, S., Kenific, C. M., Zhang, H. & Lyden, D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J. 41, e109288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira, J. V. et al. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv. 8, eabm1140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. & Fukuda, M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marie, P. P. et al. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J. Extracell. Vesicles 12, e12311 (2023).

    Article  PubMed  Google Scholar 

  24. Clancy, J. W., Schmidtmann, M. & D’Souza-Schorey, C. The ins and outs of microvesicles. FASEB Bioadv. 3, 399–406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, 1505403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  27. Rilla, K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J. Extracell. Vesicles 10, e12148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rai, A. et al. Secreted midbody remnants are a class of extracellular vesicles molecularly distinct from exosomes and microparticles. Commun. Biol. 4, 400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, S. et al. The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Dev. Cell 58, 1917–1932.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Advedissian, T., Fremont, S. & Echard, A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat. Commun. 15, 1949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farmer, T. & Prekeris, R. New signaling kid on the block: the role of the postmitotic midbody in polarity, stemness, and proliferation. Mol. Biol. Cell 33, pe2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suwakulsiri, W. et al. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: exosomes, microparticles, and shed midbody remnants. Proteomics 24, e2300057 (2024).

    Article  PubMed  Google Scholar 

  33. Peterman, E. & Prekeris, R. Understanding post-mitotic roles of the midbody during cell differentiation and polarization. Methods Cell Biol. 137, 173–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Jiao, H. et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184, 2896–2910.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, D. et al. Neutrophil-derived migrasomes are an essential part of the coagulation system. Nat. Cell Biol. 26, 1110–1123 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiao, H. et al. Localized, highly efficient secretion of signaling proteins by migrasomes. Cell Res. 34, 572–585 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mageswaran, S. K., Yang, W. Y., Chakrabarty, Y., Oikonomou, C. M. & Jensen, G. J. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane. Sci. Adv. 7, eabc6345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cordero Cervantes, D. & Zurzolo, C. Peering into tunneling nanotubes — the path forward. EMBO J. 40, e105789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chakraborty, R., Nonaka, T., Hasegawa, M. & Zurzolo, C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of alpha-synuclein and mitochondria. Cell Death Dis. 14, 329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, H. T. et al. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front. Cell Dev. Biol. 12, 1422227 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kakarla, R., Hur, J., Kim, Y. J., Kim, J. & Chwae, Y. J. Apoptotic cell-derived exosomes: messages from dying cells. Exp. Mol. Med. 52, 1–6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K. & Poon, I. K. H. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell. Biochem. 97, 61–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Ketelut-Carneiro, N. & Fitzgerald, K. A. Apoptosis, pyroptosis, and necroptosis — oh my! The many ways a cell can die. J. Mol. Biol. 434, 167378 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Hessvik, N. P. et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell. Mol. Life Sci. 73, 4717–4737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, P. et al. Mitopherogenesis, a form of mitochondria-specific ectocytosis, regulates sperm mitochondrial quantity and fertility. Nat. Cell Biol. 25, 1625–1636 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Jeppesen, D. K. et al. Blebbisomes are large, organelle-rich extracellular vesicles with cell-like properties. Nat. Cell Biol. 27, 438–448 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Vizio, D. et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69, 5601–5609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nicolas-Avila, J. A., Sanchez-Diaz, M. & Hidalgo, A. Isolation of exophers from cardiomyocyte-reporter mouse strains by fluorescence-activated cell sorting. STAR Protoc. 2, 100286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turek, M. et al. Muscle-derived exophers promote reproductive fitness. EMBO Rep. 22, e52071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shlomovitz, I. et al. Proteomic analysis of necroptotic extracellular vesicles. Cell Death Dis. 12, 1059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Witwer, K. W. & Thery, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schorey, J. S., Cheng, Y. & McManus, W. R. Bacteria- and host-derived extracellular vesicles — two sides of the same coin? J. Cell Sci. 134, jcs256628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gill, S., Catchpole, R. & Forterre, P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev. 43, 273–303 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Askenase, P. W. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are ‘The Elephant in the Room’. RNA Biol. 18, 2038–2053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cossetti, C. et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS ONE 9, e101629 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rai, A., Claridge, B., Lozano, J. & Greening, D. W. The discovery of extracellular vesicles and their emergence as a next-generation therapy. Circ. Res. 135, 198–221 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Plebanek, M. P. et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat. Commun. 8, 1319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Si, G., Chen, X., Li, Y. & Yuan, X. Exosomes promote pre-metastatic niche formation in colorectal cancer. Heliyon 10, e27572 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan, X. et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11, 1429–1445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeng, Z. et al. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps. Oncogene 41, 3719–3731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sanchez, C. A. et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993–4008 (2016).

    Article  PubMed  Google Scholar 

  75. Yu, W. et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32, 466–477 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Shegekar, T., Vodithala, S. & Juganavar, A. The emerging role of liquid biopsies in revolutionising cancer diagnosis and therapy. Cureus 15, e43650 (2023).

    PubMed  PubMed Central  Google Scholar 

  77. Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target. Ther. 5, 144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoshino, A. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182, 1044–1061.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, S. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13, eabb6981 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodrigues, G. et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lucotti, S. et al. Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin beta 2. Cell 188, 1642–1661.e24 (2025).

    Article  CAS  PubMed  Google Scholar 

  83. Tawil, N. et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv. 5, 1682–1694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Tan, F. et al. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 9, 17 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 5, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nikoloff, J. M., Saucedo-Espinosa, M. A., Kling, A. & Dittrich, P. S. Identifying extracellular vesicle populations from single cells. Proc. Natl Acad. Sci. USA 118, e2106630118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ji, Y. et al. Multiplexed profiling of single-cell extracellular vesicles secretion. Proc. Natl Acad. Sci. USA 116, 5979–5984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manno, M., Bongiovanni, A., Margolis, L., Bergese, P. & Arosio, P. The physico-chemical landscape of extracellular vesicles. Nat. Rev. Bioeng. 3, 68–82 (2024).

    Article  Google Scholar 

  91. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Greening, D. W., Xu, R., Gopal, S. K., Rai, A. & Simpson, R. J. Proteomic insights into extracellular vesicle biology — defining exosomes and shed microvesicles. Expert Rev. Proteom. 14, 69–95 (2017).

    Article  CAS  Google Scholar 

  93. Garcia-Martin, R., Brandao, B. B., Thomou, T., Altindis, E. & Kahn, C. R. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep. 38, 110277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ghoroghi, S. et al. Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. eLife 10, e61539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zijlstra, A. & Di Vizio, D. Size matters in nanoscale communication. Nat. Cell Biol. 20, 228–230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N. & Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Palmulli, R. & van Niel, G. To be or not to be… secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 62, 177–191 (2018).

    Article  PubMed  Google Scholar 

  99. Burbidge, K. et al. Cargo and cell-specific differences in extracellular vesicle populations identified by multiplexed immunofluorescent analysis. J. Extracell. Vesicles 9, 1789326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moon, M. J. et al. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. Proteomics 24, e2300391 (2024).

    Article  PubMed  Google Scholar 

  101. Zabeo, D. et al. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles 6, 1329476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin-Jaular, L. et al. Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. EMBO J. 40, e105492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ai, Y. et al. Endocytosis blocks the vesicular secretion of exosome marker proteins. Sci. Adv. 10, eadi9156 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fordjour, F. K., Guo, C., Ai, Y., Daaboul, G. G. & Gould, S. J. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J. Biol. Chem. 298, 102394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rai, A., Fang, H., Claridge, B., Simpson, R. J. & Greening, D. W. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J. Extracell. Vesicles 10, e12164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kanada, M. et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl Acad. Sci. USA 112, E1433–E1442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Follain, G. et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell 45, 33–52.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Li, H. et al. Alternation of gene expression in brain-derived exosomes after cerebral ischemic preconditioning in mice. Heliyon 10, e35936 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 24, 454–476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. von Lersner, A. K. et al. Multiparametric single-vesicle flow cytometry resolves extracellular vesicle heterogeneity and reveals selective regulation of biogenesis and cargo distribution. ACS Nano 18, 10464–10484 (2024).

    Article  Google Scholar 

  114. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yan, W. et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell Biol. 20, 597–609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lennon, K. M. et al. Single molecule characterization of individual extracellular vesicles from pancreatic cancer. J. Extracell. Vesicles 8, 1685634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizenko, R. R. et al. Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. J. Nanobiotechnol. 19, 250 (2021).

    Article  CAS  Google Scholar 

  119. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sork, H. et al. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. 8, 10813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kugeratski, F. G. et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23, 631–641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Carney, R. P. et al. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nat. Nanotechnol. 20, 14–25 (2025).

    Article  CAS  PubMed  Google Scholar 

  123. van de Wakker, S. I., Meijers, F. M., Sluijter, J. P. G. & Vader, P. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacol. Rev. 75, 1043–1061 (2023).

    Article  PubMed  Google Scholar 

  124. Ferguson, S. et al. Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer. Sci. Adv. 8, eabm3453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Demory Beckler, M. et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteom. 12, 343–355 (2013).

    Article  Google Scholar 

  127. Hyung, S. et al. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. Sci. Adv. 9, eadk1098 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhu, K. G. et al. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism. Cell Death Dis. 14, 708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  PubMed  Google Scholar 

  133. Deng, C. et al. Extracellular-vesicle-packaged S100A11 from osteosarcoma cells mediates lung premetastatic niche formation by recruiting gMDSCs. Cell Rep. 43, 113751 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Xie, X. et al. Tumor-derived exosomes can specifically prevent cancer metastatic organotropism. J. Control. Rel. 331, 404–415 (2021).

    Article  CAS  Google Scholar 

  135. Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33, 2040–2058.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yin, X. et al. PPARalpha inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 33, 108278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jeon, G. et al. miRNA profiling of B16F10 melanoma cell exosomes reveals melanin synthesis-related genes. Heliyon 10, e30474 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kesidou, D. et al. Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses. Mol. Ther. 32, 185–203 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Soncin, I. et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 9, 582 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kudo, K. et al. Secreted phospholipase A(2) modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab. 34, 615–633.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Adem, B. et al. Exosomes define a local and systemic communication network in healthy pancreas and pancreatic ductal adenocarcinoma. Nat. Commun. 15, 1496 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sansone, P. et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl Acad. Sci. USA 114, E9066–E9075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Clancy, J. W., Sheehan, C. S., Boomgarden, A. C. & D’Souza-Schorey, C. Recruitment of DNA to tumor-derived microvesicles. Cell Rep. 38, 110443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heidegger, S. et al. Targeting nucleic acid sensors in tumor cells to reprogram biogenesis and RNA cargo of extracellular vesicles for T cell-mediated cancer immunotherapy. Cell Rep. Med. 4, 101171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 9, 1305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li, B., Kugeratski, F. G. & Kalluri, R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 12, RP90390 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Quiralte, M. et al. Proteomic profiles of peritoneal fluid-derived small extracellular vesicles correlate with patient outcome in ovarian cancer. J. Clin. Invest. 134, e176161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ferguson, S., Yang, K. S. & Weissleder, R. Single extracellular vesicle analysis for early cancer detection. Trends Mol. Med. 28, 681–692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Reynolds, D. E. et al. Double digital assay for single extracellular vesicle and single molecule detection. Adv. Sci. 10, e2303619 (2023).

    Article  Google Scholar 

  151. Dorado, E. et al. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J. Extracell. Vesicles 13, e12419 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, G. et al. Proteomic profiling of serum extracellular vesicles identifies diagnostic signatures and therapeutic targets in breast cancer. Cancer Res. 84, 3267–3285 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kehrloesser, S. et al. Cell-of-origin-specific proteomics of extracellular vesicles. PNAS Nexus 2, pgad107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, J. et al. Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1. Cell. Mol. Immunol. 19, 1290–1301 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Casanova-Salas, I. et al. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 42, 1301–1312.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  158. Ruzanov, P. et al. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J. Clin. Invest. 134, e169470 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lima, L. G. et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat. Commun. 12, 3543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xing, F. et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 78, 4316–4330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sirkisoon, S. R. et al. Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2→CNTF axis to promote progression of brain metastases. Cancer Lett. 540, 215726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Benito-Martin, A. et al. Mast cells impair melanoma cell homing and metastasis by inhibiting HMGA1 secretion. Immunology 168, 362–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Leary, N. et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 11, e12197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao, L., Ma, X. & Yu, J. Exosomes and organ-specific metastasis. Mol. Ther. Methods Clin. Dev. 22, 133–147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  168. Toth, E. A. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Musico, A. et al. Surface functionalization of extracellular vesicle nanoparticles with antibodies: a first study on the protein corona ‘variable’. Nanoscale Adv. 5, 4703–4717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liam-Or, R. et al. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. Nat. Nanotechnol. 19, 846–855 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wolf, M. et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J. Extracell. Vesicles 11, e12207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hirosawa, K. M. et al. Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling. Nat. Commun. 16, 2419 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hallal, S., Tuzesi, A., Grau, G. E., Buckland, M. E. & Alexander, K. L. Understanding the extracellular vesicle surface for clinical molecular biology. J. Extracell. Vesicles 11, e12260 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Koo, D. et al. Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. Nat. Commun. 15, 4870 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Colao, I. L., Corteling, R., Bracewell, D. & Wall, I. Manufacturing exosomes: a promising therapeutic platform. Trends Mol. Med. 24, 242–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials — an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).

    Article  PubMed  Google Scholar 

  179. Thouvenot, E. et al. High-yield bioproduction of extracellular vesicles from stem cell spheroids via millifluidic vortex transport. Adv. Mater. 37, 2412498 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Paganini, C., Boyce, H., Libort, G. & Arosio, P. High-yield production of extracellular vesicle subpopulations with constant quality using batch-refeed cultures. Adv. Healthc. Mater. 12, e2202232 (2023).

    Article  PubMed  Google Scholar 

  181. Feng, J. et al. Plant-derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. Adv. Mater. 35, e2207826 (2023).

    Article  PubMed  Google Scholar 

  182. de Abreu, R. C. et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Reategui, E. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 9, 175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sharma, P. et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles 7, 1435138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Vallabhajosyula, P. et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J. Clin. Invest. 127, 1375–1391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Cheng, C. A., Hou, K. C., Hsu, C. W. & Chiang, L. C. Ultrasensitive and high-resolution protein spatially decoding framework for tumor extracellular vesicles. Adv. Sci. 11, e2304926 (2024).

    Article  Google Scholar 

  188. Bergqvist, M., Lasser, C., Crescitelli, R., Park, K. S. & Lotvall, J. A non-centrifugation method to concentrate and purify extracellular vesicles using superabsorbent polymer followed by size exclusion chromatography. J. Extracell. Vesicles 14, e70037 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gorgens, A. et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles 11, e12238 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gelibter, S. et al. The impact of storage on extracellular vesicles: a systematic study. J. Extracell. Vesicles 11, e12162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Trenkenschuh, E. et al. Enhancing the stabilization potential of lyophilization for extracellular vesicles. Adv. Healthc. Mater. 11, e2100538 (2022).

    Article  PubMed  Google Scholar 

  192. Lozano-Andres, E. et al. Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material. J. Extracell. Vesicles 8, 1573052 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gorgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Geeurickx, E. et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rohde, E., Pachler, K. & Gimona, M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy 21, 581–592 (2019).

    Article  PubMed  Google Scholar 

  196. Borger, V. et al. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy 22, 482–485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Meng, W. et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 27, 585–598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Guo, M. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med. 11, eaat5690 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Gong, L. et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J. Control. Rel. 364, 672–686 (2023).

    Article  CAS  Google Scholar 

  200. Takakura, Y. et al. Quality and safety considerations for therapeutic products based on extracellular vesicles. Pharm. Res. 41, 1573–1594 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wiklander, O. P. B., Brennan, M. A., Lotvall, J., Breakefield, X. O. & El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, eaav8521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Marsavela, G., Aya-Bonilla, C. A., Warkiani, M. E., Gray, E. S. & Ziman, M. Melanoma circulating tumor cells: benefits and challenges required for clinical application. Cancer Lett. 424, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Castillo, J. et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 29, 223–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Pietrowska, M. et al. Proteomic profile of melanoma cell-derived small extracellular vesicles in patients’ plasma: a potential correlate of melanoma progression. J. Extracell. Vesicles 10, e12063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kang, Y. T. et al. Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity-based microfluidic interfaces. Adv. Sci. 7, 2001581 (2020).

    Article  CAS  Google Scholar 

  207. Cheng, S. et al. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. Lab Chip 21, 3219–3243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sundaresan, T. K. et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin. Cancer Res. 22, 1103–1110 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Yang, D. et al. Progress, opportunity, and perspective on exosome isolation — efforts for efficient exosome-based theranostics. Theranostics 10, 3684–3707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hinestrosa, J. P. et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun. Med. 2, 29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Salviano-Silva, A. et al. Extracellular vesicles carrying Tenascin-C are clinical biomarkers and improve tumor-derived DNA analysis in glioblastoma patients. ACS Nano 19, 9844–9859 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Spitzberg, J. D. et al. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat. Commun. 14, 1239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wu, X. et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6, eaba2556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Min, L. et al. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. 8, e2102789 (2021).

    Article  Google Scholar 

  216. McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    Article  PubMed  Google Scholar 

  217. Freag, M. S. et al. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. Sci. Adv. 10, eadk3074 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhou, X. et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell. Mol. Immunol. 17, 323–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Morse, M. A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3, 9 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 12, 2041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, E. Y. et al. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS ONE 7, e33330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mahaweni, N. M., Kaijen-Lambers, M. E., Dekkers, J., Aerts, J. G. & Hegmans, J. P. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J. Extracell. Vesicles 2, 22492 (2013).

    Article  Google Scholar 

  224. Rao, Q. et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 64, 456–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Lv, Q. et al. Thermosensitive exosome–liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci. 7, 2000515 (2020).

    Article  CAS  Google Scholar 

  226. Cheng, Q. et al. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther. 30, 3066–3077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gordillo, G. M. et al. Tissue nanotransfection causes tumor regression by its effect on nanovesicle cargo that alters microenvironmental macrophage state. Mol. Ther. 31, 1402–1417 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Gong, N. et al. Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery. Nat. Mater. 23, 1736–1747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, R., Zhu, T., Hou, B. & Huang, X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol. Ther. 31, 2376–2390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Jayasinghe, M. K. et al. Extracellular vesicle surface display enhances the therapeutic efficacy and safety profile of cancer immunotherapy. Mol. Ther. 32, 3558–3579 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Fan, M. et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 282, 121424 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Jung, M. et al. Nanovesicle-mediated targeted delivery of immune checkpoint blockades to potentiate therapeutic efficacy and prevent side effects. Adv. Mater. 34, e2106516 (2022).

    Article  PubMed  Google Scholar 

  233. Wu, K. et al. Engineering an active immunotherapy for personalized cancer treatment and prevention of recurrence. Sci. Adv. 9, eade0625 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Kim, G. B. et al. Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Sci. Adv. 6, eaaz2083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xie, X. et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat. Commun. 10, 5476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Datta, A. et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci. Rep. 8, 8161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Yang, Z. et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4, 69–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Witwer, K. W. & Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 6, 103–106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nie, W. et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew. Chem. Int. Ed. Engl. 59, 2018–2022 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang, D. et al. A metabolism-oriented strategy to directly generate photosensitizer-engineered extracellular vesicles from cancer cells. Adv. Mater. 37, 2505726 (2025).

    Article  CAS  Google Scholar 

  242. Bi, Y. et al. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience 27, 108833 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Liang, X. et al. Engineering of extracellular vesicles for efficient intracellular delivery of multimodal therapeutics including genome editors. Nat. Commun. 16, 4028 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7, 887–900 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Dong, S. et al. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat. Commun. 14, 6610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang, Y. et al. Efficient, high-quality engineering of therapeutic extracellular vesicles on an integrated nanoplatform. ACS Nano 18, 32421–32437 (2024).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, J. et al. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale 9, 15598–15605 (2017).

    Article  CAS  PubMed  Google Scholar 

  248. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhuang, M. et al. SPION decorated exosome delivery of TNF-alpha to cancer cell membranes through magnetism. Nanoscale 12, 173–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Lu, Y. et al. Small EV-based delivery of CpG ODNs for melanoma postsurgical immunotherapy. J. Control. Rel. 363, 484–495 (2023).

    Article  CAS  Google Scholar 

  251. Wiklander, O. P. B. et al. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat. Biomed. Eng. 8, 1453–1468 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Han, Z. et al. Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl. Bio Mater. 3, 2666–2673 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Kowalczyk, A. et al. Surface-bioengineered extracellular vesicles seeking molecular biotargets in lung cancer cells. ACS Appl. Mater. Interfaces 16, 31997–32016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Evers, M. J. W. et al. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. Adv. Healthc. Mater. 11, e2101202 (2022).

    Article  PubMed  Google Scholar 

  256. Zhu, T., Chen, Z., Jiang, G. & Huang, X. Sequential targeting hybrid nanovesicles composed of chimeric antigen receptor T-cell-derived exosomes and liposomes for enhanced cancer immunochemotherapy. ACS Nano 17, 16770–16786 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Sancho-Albero, M. et al. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale 11, 18825–18836 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Yang, Y. et al. Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Signal Transduct. Target. Ther. 9, 158 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jayasinghe, M. K. et al. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin. Cancer Biol. 74, 62–78 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Pham, T. C. et al. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J. Extracell. Vesicles 10, e12057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kamerkar, S. et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci. Adv. 8, eabj7002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lin, Y. et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).

    Article  Google Scholar 

  263. Kim, S. M. et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Rel. 266, 8–16 (2017).

    Article  CAS  Google Scholar 

  264. Dubey, S. et al. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. Theranostics 14, 2777–2793 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhao, J. et al. CRISPR–Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics 14, 2835–2855 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gulei, D. & Berindan-Neagoe, I. Activation of necroptosis by engineered self tumor-derived exosomes loaded with CRISPR/Cas9. Mol. Ther. Nucleic Acids 17, 448–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Usman, W. M. et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 9, 2359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Corvigno, S. et al. Enhanced plant-derived vesicles for nucleotide delivery for cancer therapy. npj Precis. Oncol. 8, 86 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wedge, M. E. et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat. Commun. 13, 1898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lamichhane, T. N. et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol. Bioeng. 9, 315–324 (2016).

    Article  CAS  PubMed  Google Scholar 

  271. O’Loughlin, A. J. et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol. Ther. 25, 1580–1587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  272. McAndrews, K. M. et al. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci. Alliance 4, e202000875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 7, 12277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gurriaran-Rodriguez, U. et al. Identification of the Wnt signal peptide that directs secretion on extracellular vesicles. Sci. Adv. 10, eado5914 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Pomatto, M. A. C. et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol. Ther. Methods Clin. Dev. 13, 133–144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Huang, L. et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer 21, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yazawa, M., Sadaghiani, A. M., Hsueh, B. & Dolmetsch, R. E. Induction of protein–protein interactions in live cells using light. Nat. Biotechnol. 27, 941–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  280. Wang, J., Chen, D. & Ho, E. A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Rel. 329, 894–906 (2021).

    Article  CAS  Google Scholar 

  281. Somiya, M. & Kuroda, S. Engineering of extracellular vesicles for small molecule-regulated cargo loading and cytoplasmic delivery of bioactive proteins. Mol. Pharm. 19, 2495–2505 (2022).

    Article  CAS  PubMed  Google Scholar 

  282. Gee, P. et al. Extracellular nanovesicles for packaging of CRISPR–Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 11, 1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Hood, J. L., Scott, M. J. & Wickline, S. A. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 448, 41–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Fuhrmann, G., Serio, A., Mazo, M., Nair, R. & Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Rel. 205, 35–44 (2015).

    Article  CAS  Google Scholar 

  285. Esfandyarpour, R. et al. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc. Natl Acad. Sci. USA 114, E1306–E1315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Li, G. et al. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J. Extracell. Vesicles 12, e12305 (2023).

    Article  PubMed  Google Scholar 

  287. Chiang, C. L. et al. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat. Commun. 14, 6692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang, X. et al. Tumor vaccine based on extracellular vesicles derived from γδ-T cells exerts dual antitumor activities. J. Extracell. Vesicles 12, e12360 (2023).

    Article  PubMed  Google Scholar 

  289. Silva, A. M. et al. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J. Extracell. Vesicles 10, e12130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J. Extracell. Vesicles 5, 31027 (2016).

    Article  PubMed  Google Scholar 

  291. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    Article  PubMed  Google Scholar 

  292. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Zhang, H. et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer 19, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Lin, F. et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res. Ther. 10, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Kooijmans, S. A. et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J. Extracell. Vesicles 5, 31053 (2016).

    Article  PubMed  Google Scholar 

  296. Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  297. Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat. Biomed. Eng. 5, 1084–1098 (2021).

    Article  CAS  PubMed  Google Scholar 

  298. Yuan, J. et al. Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma. J. Colloid Interface Sci. 676, 378–395 (2024).

    Article  CAS  PubMed  Google Scholar 

  299. Xie, J. et al. Targeted therapy for peri-prosthetic osteolysis using macrophage membrane-encapsulated human urine-derived stem cell extracellular vesicles. Acta Biomater. 160, 297–310 (2023).

    Article  CAS  PubMed  Google Scholar 

  300. Wang, H. et al. Hybrid Ginseng-derived extracellular vesicles-like particles with autologous tumor cell membrane for personalized vaccination to inhibit tumor recurrence and metastasis. Adv. Sci. 11, e2308235 (2024).

    Article  Google Scholar 

  301. Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F. & Tareste, D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 12, 6830–6842 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. Chen, Y. et al. Leveraging nature’s nanocarriers: translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci. Adv. 11, eads5249 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Staufer, O. et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Moon, K., Hur, J., Kim, K. P., Lee, K. & Kang, J. Y. Surface-functionalizable plant-derived extracellular vesicles for targeted drug delivery carrier using grapefruit. Adv. Mater. Interfaces 10, 2300220 (2023).

    Article  CAS  Google Scholar 

  306. Fernandes Neto, J. M. et al. Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. Nat. Commun. 11, 3157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Wang, Q. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4, 1867 (2013).

    Article  PubMed  Google Scholar 

  308. de Voogt, W. S. et al. EV-Elute: a universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations. J. Extracell. Vesicles 13, e70017 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Hu, Q. et al. Clinical applications of exosome membrane proteins. Precis. Clin. Med. 3, 54–66 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Buzas, E. I., Toth, E. A., Sodar, B. W. & Szabo-Taylor, K. E. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 40, 453–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Charoenviriyakul, C., Takahashi, Y., Morishita, M., Nishikawa, M. & Takakura, Y. Role of extracellular vesicle surface proteins in the pharmacokinetics of extracellular vesicles. Mol. Pharm. 15, 1073–1080 (2018).

    Article  CAS  PubMed  Google Scholar 

  312. Chowdhury, R. et al. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. Nanoscale 16, 11457–11479 (2024).

    Article  CAS  PubMed  Google Scholar 

  313. Barok, M., Puhka, M., Yazdi, N. & Joensuu, H. Extracellular vesicles as modifiers of antibody–drug conjugate efficacy. J. Extracell. Vesicles 10, e12070 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Bose, R. J. et al. Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv. Healthc. Mater. 11, e2101387 (2022).

    Article  PubMed  Google Scholar 

  315. Belhadj, Z. et al. A combined ‘eat me/don’t eat me’ strategy based on extracellular vesicles for anticancer nanomedicine. J. Extracell. Vesicles 9, 1806444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Xu, H., Liao, C., Liang, S. & Ye, B. C. A novel peptide-equipped exosomes platform for delivery of antisense oligonucleotides. ACS Appl. Mater. Interfaces 13, 10760–10767 (2021).

    Article  CAS  PubMed  Google Scholar 

  317. Zhou, P., Du, X., Jia, W., Feng, K. & Zhang, Y. Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct. Target. Ther. 9, 151 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Hadjidemetriou, M. et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).

    Article  CAS  PubMed  Google Scholar 

  319. Cao, Y. et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13, 1499–1510 (2019).

    CAS  PubMed  Google Scholar 

  320. Ruivo, C. F. et al. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut 71, 2043–2068 (2022).

    Article  CAS  PubMed  Google Scholar 

  321. Zhang, K. L. et al. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy. Chem. Sci. 10, 1555–1561 (2019).

    Article  CAS  PubMed  Google Scholar 

  322. Yong, T. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Lu, M. et al. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater. 34, e2204765 (2022).

    Article  PubMed  Google Scholar 

  324. Xu, F. et al. Engineering of dendritic cell bispecific extracellular vesicles for tumor-targeting immunotherapy. Cell Rep. 42, 113138 (2023).

    Article  CAS  PubMed  Google Scholar 

  325. Meng, Y. et al. Extracellular vesicles-based vaccines: emerging immunotherapies against cancer. J. Control. Rel. 378, 438–459 (2025).

    Article  CAS  Google Scholar 

  326. Zhang, M. et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct. Target. Ther. 8, 124 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  328. Wang, L., Wang, D., Ye, Z. & Xu, J. Engineering extracellular vesicles as delivery systems in therapeutic applications. Adv. Sci. 10, e2300552 (2023).

    Article  Google Scholar 

  329. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  330. Phung, C. D. et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 115, 371–382 (2020).

    Article  CAS  PubMed  Google Scholar 

  331. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).

    Article  CAS  PubMed  Google Scholar 

  332. Ma, F. et al. Tumor extracellular vesicle-derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming. Sci. Transl. Med. 17, eadm7269 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Goyvaerts, C. & Breckpot, K. Towards a personalized iPSC-based vaccine. Nat. Biomed. Eng. 2, 277–278 (2018).

    Article  PubMed  Google Scholar 

  334. Xing, Y. et al. Efficient delivery of GSDMD-N mRNA by engineered extracellular vesicles induces pyroptosis for enhanced immunotherapy. Small 19, e2204031 (2023).

    Article  PubMed  Google Scholar 

  335. Jang, S. C. et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun. Biol. 4, 497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. McAndrews, K. M., Che, S. P. Y., LeBleu, V. S. & Kalluri, R. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. J. Biol. Chem. 296, 100523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Bao, P. et al. Chimeric exosomes functionalized with STING activation for personalized glioblastoma immunotherapy. Adv. Sci. 11, e2306336 (2024).

    Article  Google Scholar 

  338. Rayamajhi, S. et al. Extracellular vesicles as liquid biopsy biomarkers across the cancer journey: from early detection to recurrence. Clin. Chem. 70, 206–219 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  340. Jiang, L. et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J. Extracell. Vesicles 11, e12192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. van Eijndhoven, M. A. et al. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 1, e89631 (2016).

    PubMed  PubMed Central  Google Scholar 

  342. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Lai, X. et al. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 393, 86–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Yokoi, A. et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat. Commun. 8, 14470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Li, H. et al. Extracellular vesicular analysis of Glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis. Adv. Sci. 11, e2306373 (2024).

    Article  Google Scholar 

  346. Margolis, E. et al. Predicting high-grade prostate cancer at initial biopsy: clinical performance of the ExoDx (EPI) Prostate Intelliscore test in three independent prospective studies. Prostate Cancer Prostatic Dis. 25, 296–301 (2022).

    Article  PubMed  Google Scholar 

  347. Tutrone, R. et al. ExoDx prostate test as a predictor of outcomes of high-grade prostate cancer — an interim analysis. Prostate Cancer Prostatic Dis. 26, 596–601 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Tutrone, R. et al. Correction to: ExoDx prostate test as a predictor of outcomes of high-grade prostate cancer — an interim analysis. Prostate Cancer Prostatic Dis. 27, 161 (2024).

    Article  PubMed  Google Scholar 

  349. Allenson, K. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Wan, Y. et al. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann. Oncol. 29, 2379–2383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Krug, A. K. et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 29, 700–706 (2018).

    Article  CAS  PubMed  Google Scholar 

  352. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Theodoraki, M. N. et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncoimmunology 8, 1593805 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  354. Fan, Y. et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann. Surg. Oncol. 26, 3745–3755 (2019).

    Article  PubMed  Google Scholar 

  355. Li, C. et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J. Transl. Med. 17, 355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Wu, Q. et al. Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics. Nat. Commun. 14, 6541 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Luo, Z. et al. Voluntary exercise sensitizes cancer immunotherapy via the collagen inhibition-orchestrated inflammatory tumor immune microenvironment. Cell Rep. 43, 114697 (2024).

    Article  CAS  PubMed  Google Scholar 

  358. Storci, G. et al. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells. J. Clin. Invest. 134, e173096 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Zhai, C. et al. Precise identification and profiling of surface proteins of ultra rare tumor specific extracellular vesicle with dynamic quantitative plasmonic imaging. ACS Nano 17, 16656–16667 (2023).

    Article  CAS  PubMed  Google Scholar 

  360. Iannotta, D., Amruta, A., Kijas, A. W., Rowan, A. E. & Wolfram, J. Entry and exit of extracellular vesicles to and from the blood circulation. Nat. Nanotechnol. 19, 13–20 (2024).

    Article  CAS  PubMed  Google Scholar 

  361. San Lucas, F. A. et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann. Oncol. 27, 635–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  362. Ciani, Y., Nardella, C. & Demichelis, F. Casting a wider net: the clinical potential of EV transcriptomics in multi-analyte liquid biopsy. Cancer Cell 42, 1160–1162 (2024).

    Article  CAS  PubMed  Google Scholar 

  363. Wortzel, I. et al. Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. Nat. Cancer 5, 1815–1833 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Rak, J. Anti-metastatic extracellular vesicles carrying DNA. Nat. Cancer 5, 1793–1795 (2024).

    Article  CAS  PubMed  Google Scholar 

  365. Rai, A. et al. Multi-omics discovery of hallmark protein and lipid features of circulating small extracellular vesicles in humans. Preprint at bioRxiv https://doi.org/10.1101/2024.03.16.585131 (2024).

  366. Saftics, A. et al. Single extracellular vesicle nanoscopy. J. Extracell. Vesicles 12, e12346 (2023).

    Article  PubMed  Google Scholar 

  367. Van Dorpe, S., Tummers, P., Denys, H. & Hendrix, A. Towards the clinical implementation of extracellular vesicle-based biomarker assays for cancer. Clin. Chem. 70, 165–178 (2024).

    Article  PubMed  Google Scholar 

  368. Jiao, Y. et al. Profiling DNA cargos in single extracellular vesicles via hydrogel-based droplet digital multiple displacement amplification. Anal. Chem. 96, 1293–1300 (2024).

    Article  CAS  PubMed  Google Scholar 

  369. Wu, A. et al. Genome-wide plasma DNA methylation features of metastatic prostate cancer. J. Clin. Invest. 130, 1991–2000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Foda, Z. H. et al. Detecting liver cancer using cell-free DNA fragmentomes. Cancer Discov. 13, 616–631 (2023).

    Article  CAS  PubMed  Google Scholar 

  371. Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Thierry, A. R. Circulating DNA fragmentomics and cancer screening. Cell Genom. 3, 100242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Soleimany, A. P. & Bhatia, S. N. Activity-based diagnostics: an emerging paradigm for disease detection and monitoring. Trends Mol. Med. 26, 450–468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).

    Article  CAS  PubMed  Google Scholar 

  376. Vittone, J., Gill, D., Goldsmith, A., Klein, E. A. & Karlitz, J. J. A multi-cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening. npj Precis. Oncol. 8, 91 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Guerra, C. E., Sharma, P. V. & Castillo, B. S. Multi-cancer early detection: the new frontier in cancer early detection. Annu. Rev. Med. 75, 67–81 (2024).

    Article  CAS  PubMed  Google Scholar 

  378. Walker, S. N. et al. Rapid assessment of biomarkers on single extracellular vesicles using ‘Catch and Display’ on ultrathin nanoporous silicon nitride membranes. Small 2, e2405505 (2024).

    Google Scholar 

  379. Gao, X. et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 10, eaat0195 (2018).

    Article  PubMed  Google Scholar 

  380. Salem, D. P. et al. Colocalization of cancer-associated biomarkers on single extracellular vesicles for early detection of cancer. J. Mol. Diagn. 26, 1109–1128 (2024).

    Article  CAS  PubMed  Google Scholar 

  381. Radeghieri, A. & Bergese, P. The biomolecular corona of extracellular nanoparticles holds new promises for advancing clinical molecular diagnostics. Expert Rev. Mol. Diagn. 23, 471–474 (2023).

    Article  CAS  PubMed  Google Scholar 

  382. Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Wang, J. et al. Targeting vaccines to dendritic cells by mimicking the processing and presentation of antigens in xenotransplant rejection. Nat. Biomed. Eng. 9, 201–214 (2025).

    Article  CAS  PubMed  Google Scholar 

  384. Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 8, 1145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  385. Wang, C. K., Tsai, T. H. & Lee, C. H. Regulation of exosomes as biologic medicines: regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 17, e13904 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Nguyen, V. V. T., Witwer, K. W., Verhaar, M. C., Strunk, D. & van Balkom, B. W. M. Functional assays to assess the therapeutic potential of extracellular vesicles. J. Extracell. Vesicles 10, e12033 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  387. Gupta, D., Zickler, A. M. & El Andaloussi, S. Dosing extracellular vesicles. Adv. Drug Deliv. Rev. 178, 113961 (2021).

    Article  CAS  PubMed  Google Scholar 

  388. Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 61–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Zheng, W. et al. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J. Extracell. Vesicles 11, e12290 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  390. Shen, Y. et al. Sequential release of small extracellular vesicles from bilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing. ACS Nano 15, 6352–6368 (2021).

    Article  CAS  PubMed  Google Scholar 

  391. Lv, K. et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics 9, 7403–7416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Xing, H. et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J. Nanobiotechnol. 19, 264 (2021).

    Article  CAS  Google Scholar 

  393. Tang, J. et al. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics. Adv. Healthc. Mater. 11, e2100312 (2022).

    Article  PubMed  Google Scholar 

  394. Kink, J. A. et al. Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome. Stem Cell Res. Ther. 15, 72 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. EATRIS-Plus Multi-omics working group and Stakeholders. Multi-omics quality assessment in personalized medicine through European Infrastructure for Translational Medicine (EATRIS): an overview. Phenomics 5, 311–325 (2025).

    Article  Google Scholar 

  396. Winn-Deen, E. S. et al. Improving specificity for ovarian cancer screening using a novel extracellular vesicle-based blood test: performance in a training and verification cohort. J. Mol. Diagn. 26, 1129–1148 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Park, J. et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 5, 678–689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Chen, Y. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 18, 212–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  399. Radler, J., Gupta, D., Zickler, A. & Andaloussi, S. E. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol. Ther. 31, 1231–1250 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  400. Yim, K. H. W., Krzyzaniak, O., Al Hrout, A., Peacock, B. & Chahwan, R. Assessing extracellular vesicles in human biofluids using flow-based analyzers. Adv. Healthc. Mater. 12, e2301706 (2023).

    Article  PubMed  Google Scholar 

  401. Baba, S. et al. A noninvasive urinary microRNA-based assay for the detection of pancreatic cancer from early to late stages: a case control study. eClinicalMedicine 78, 102936 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  402. Hinestrosa, J. P. et al. Development of a blood-based extracellular vesicle classifier for detection of early-stage pancreatic ductal adenocarcinoma. Commun. Med. 3, 146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  404. Arya, S. B., Chen, S., Jordan-Javed, F. & Parent, C. A. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat. Cell Biol. 24, 1019–1028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Palmulli, R. et al. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat. Cell Biol. 26, 1093–1109 (2024).

    Article  CAS  PubMed  Google Scholar 

  406. Lischnig, A., Bergqvist, M., Ochiya, T. & Lasser, C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol. Cell. Proteom. 21, 100273 (2022).

    Article  CAS  Google Scholar 

  407. Nicolas-Avila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  CAS  PubMed  Google Scholar 

  408. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  409. Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).

    Article  PubMed  Google Scholar 

  410. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Liu, C. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).

    Article  CAS  PubMed  Google Scholar 

  412. Ma, X. et al. Functional immune cell-derived exosomes engineered for the trilogy of radiotherapy sensitization. Adv. Sci. 9, e2106031 (2022).

    Article  Google Scholar 

  413. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e4914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  415. Wang, Q. et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 75, 2520–2529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Zhang, J. et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci. Adv. 8, eabj8207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Kim, K. A. et al. Genome-wide methylation profiling reveals extracellular vesicle DNA as an ex vivo surrogate of cancer cell-derived DNA. Sci. Rep. 14, 24110 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Rosas-Alonso, R. et al. Evaluation of the clinical use of MGMT methylation in extracellular vesicle-based liquid biopsy as a tool for glioblastoma patient management. Sci. Rep. 14, 11398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Meng, Y. et al. Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics. Sci. Adv. 9, eadi5296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Jin, S., Plikus, M. V. & Nie, Q. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nat. Protoc. 20, 180–219 (2025).

    Article  CAS  PubMed  Google Scholar 

  421. Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell–cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  422. Menasche, P. et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report. eBioMedicine 103, 105145 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    Article  PubMed  Google Scholar 

  424. Andrews, D. W. et al. Phase Ib clinical trial of IGV-001 for patients with newly diagnosed glioblastoma. Clin. Cancer Res. 27, 1912–1922 (2021).

    Article  CAS  PubMed  Google Scholar 

  425. LeBleu, V. S. et al. KRASG12D-specific targeting with engineered exosomes reprograms the immune microenvironment to enable efficacy of immune checkpoint therapy in PDAC patients. Preprint at medRxiv https://doi.org/10.1101/2025.03.03.25322827 (2025).

  426. Hu, S. et al. Exosome-eluting stents for vascular healing after ischaemic injury. Nat. Biomed. Eng. 5, 1174–1188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Gorringe, A. R. & Pajon, R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum. Vaccin. Immunother. 8, 174–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  428. Choi, S. et al. Displaying and delivering viral membrane antigens via WW domain-activated extracellular vesicles. Sci. Adv. 9, eade2708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Nikoloff, J. M., Saucedo-Espinosa, M. A. & Dittrich, P. S. Microfluidic platform for profiling of extracellular vesicles from single breast cancer cells. Anal. Chem. 95, 1933–1939 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Sun, J. et al. Enhancing analysis of extracellular vesicles by microfluidics. Anal. Chem. 97, 6922–6937 (2025).

    Article  CAS  PubMed  Google Scholar 

  432. Abreu, C. M., Costa-Silva, B., Reis, R. L., Kundu, S. C. & Caballero, D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. Lab Chip 22, 1093–1125 (2022).

    Article  CAS  PubMed  Google Scholar 

  433. Chiu, D. T. et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2, 201–223 (2017).

    Article  CAS  Google Scholar 

  434. Luo, H. T. et al. Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells. npj Genom. Med. 6, 48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Suwakulsiri, W. et al. Transcriptomic analysis and fusion gene identifications of midbody remnants released from colorectal cancer cells reveals they are molecularly distinct from exosomes and microparticles. Proteomics 24, e2300058 (2024).

    Article  PubMed  Google Scholar 

  436. Guo, T. et al. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer. Mol. Cancer 21, 216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Long, F. et al. A novel exosome-derived prognostic signature and risk stratification for breast cancer based on multi-omics and systematic biological heterogeneity. Comput. Struct. Biotechnol. J. 21, 3010–3023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Tsering, T., Nadeau, A., Wu, T., Dickinson, K. & Burnier, J. V. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. Cell Death Dis. 15, 668 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  439. Liu, H. et al. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J. Extracell. Vesicles 11, e12206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Wang, C. et al. Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR. Clin. Biochem. 67, 54–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  441. Shen, X. et al. Evaluation of EpCAM-specific exosomal lncRNAs as potential diagnostic biomarkers for lung cancer using droplet digital PCR. J. Mol. Med. 100, 87–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  442. Li, J. et al. Digital decoding of single extracellular vesicle phenotype differentiates early malignant and benign lung lesions. Adv. Sci. 10, e2204207 (2022).

    Article  Google Scholar 

  443. Banijamali, M. et al. Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J. Extracell. Vesicles 11, e12277 (2022).

    Article  PubMed  Google Scholar 

  444. Penders, J. et al. Single particle automated Raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers. ACS Nano 15, 18192–18205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Choi, J. Y. et al. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. Biosens. Bioelectron. 267, 116773 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.W.G.’s laboratory is supported by research funds from the National Health and Medical Research Council (NHMRC; MRF2015523 and APP1141946), National Heart Foundation (NHF; 105072), Helen Amelia Hains Fellowship (D.W.G.) and Department of Defense (PR230065). R.X. is supported by research funds from CASS Foundation (10380), Bethlehem Griffiths Research Foundation (2302) and Monash Future Leadership Fellowship (R.X.). The Baker Heart & Diabetes Institute acknowledges support by the Victorian State Government Operational Infrastructure funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of this manuscript.

Corresponding authors

Correspondence to David W. Greening or Richard J. Simpson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bulk EVs

The entire vesicular population (including onco-extracellular vesicles and all other subtypes) present in biofluids, originating from multiple organs, tissues and cell types.

Exosomes

A major class of extracellular vesicle (typically 30–150 nm in diameter) of endocytic origin released by all cell types following fusion of multivesicular bodies with the plasma membrane.

Extracellular vesicles

(EVs). Lipid membrane-encapsulated particles released by cells into the intercellular space and/or circulation that enable bidirectional cell–cell communication. EVs comprise various subclasses based on their molecular cargo, biogenesis and biophysical properties.

Liquid biopsy

Analysis of blood samples to identify circulating cancer biomarkers that can aid in clinical diagnosis and disease prognosis.

Microparticles

A major class of membranous extracellular vesicles (typically, 50–1,500 nm in diameter) formed by direct budding from the plasma membrane; microparticles can also be known as microvesicles and ectosomes.

Nanoparticles

Synthetic, lipid-based, polymeric and inorganic nanostructures (typically <100 nm in diameter) that determine their functionality, activity and utility for drug delivery applications.

Nanoscopy

Use of light microscopy technique with diffraction-unlimited spatial resolution, which produces high-resolution images at the nanometre scale (also known as single-molecule localization microscopy or super-resolution microscopy).

Nanotherapeutics

The use of nanotechnology to design and deliver drugs and devices to treat a wide range of diseases, improve drug delivery and reduce toxicity.

Non-vesicular extracellular particles

(NVEPs). Non-extracellular vesicle particles include plasma lipoproteins, protein aggregates, supermeres, exomeres and even viruses.

Onco-EVs

Cancer cell-derived extracellular vesicles (EVs) that contain oncogenic cargoes (such as EV surface proteins, antigens, intracellular proteins, lipids, metabolites, RNAs, DNA fragments and others) that might augment cancer progression.

Pre-metastatic niche

A microenvironment induced by factors released from the primary tumour in a distant organ that supports metastatic cell seeding, survival and outgrowth. Such factors include tumour cell-derived exosomes and extracellular vesicles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greening, D.W., Xu, R., Rai, A. et al. Clinical relevance of extracellular vesicles in cancer — therapeutic and diagnostic potential. Nat Rev Clin Oncol (2025). https://doi.org/10.1038/s41571-025-01074-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-025-01074-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer