Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python | Remove Redundant Substrings from Strings List

    Last Updated : 07 Apr, 2023
    Comments
    Improve
    Suggest changes
    2 Likes
    Like
    Report
    See More

    Given list of Strings, task is to remove all the strings, which are substrings of other Strings.

    Input : test_list = ["Gfg", "Gfg is best", "Geeks", "for", "Gfg is for Geeks"] 
    Output : ['Gfg is best', 'Gfg is for Geeks'] 
    Explanation : "Gfg", "for" and "Geeks" are present as substrings in other strings.
    Input : test_list = ["Gfg", "Geeks", "for", "Gfg is for Geeks"] 
    Output : ['Gfg is for Geeks'] 
    Explanation : "Gfg", "for" and "Geeks" are present as substrings in other strings.
     

    Method #1 : Using enumerate() + join() + sort() 

    The combination of above functions can be used to solve this problem. In this, first the sorting is performed on length parameter, and current word is checked with other words, if it occurs as substring, if yes, its excluded from filtered result.

    Python3
    # Python3 code to demonstrate working of 
    # Remove Redundant Substrings from Strings List
    # Using enumerate() + join() + sort()
    
    # initializing list
    test_list = ["Gfg", "Gfg is best", "Geeks", "Gfg is for Geeks"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # using loop to iterate for each string 
    test_list.sort(key = len)
    res = []
    for idx, val in enumerate(test_list):
        
        # concatenating all next values and checking for existence
        if val not in ', '.join(test_list[idx + 1:]):
            res.append(val)
    
    # printing result 
    print("The filtered list : " + str(res))
    

    Output
    The original list : ['Gfg', 'Gfg is best', 'Geeks', 'Gfg is for Geeks']
    The filtered list : ['Gfg is best', 'Gfg is for Geeks']

    Time complexity: O(nlogn), where n is the length of the test_list. The enumerate() + join() + sort()  takes O(nlogn) time
    Auxiliary Space: O(n), extra space of size n is required

    Method #2 : Using list comprehension + join() + enumerate()

    The combination of above functions can be used to solve this problem. In this, we perform task in similar way as above just the difference being in more compact way in list comprehension.

    Python3
    # Python3 code to demonstrate working of 
    # Remove Redundant Substrings from Strings List
    # Using list comprehension + join() + enumerate()
    
    # initializing list
    test_list = ["Gfg", "Gfg is best", "Geeks", "Gfg is for Geeks"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # using list comprehension to iterate for each string 
    # and perform join in one liner
    test_list.sort(key = len)
    res = [val for idx, val in enumerate(test_list) if val not in ', '.join(test_list[idx + 1:])]
    
    # printing result 
    print("The filtered list : " + str(res))
    

    Output
    The original list : ['Gfg', 'Gfg is best', 'Geeks', 'Gfg is for Geeks']
    The filtered list : ['Gfg is best', 'Gfg is for Geeks']

    The Time and Space Complexity for all the methods are the same:

    Time Complexity: O(n)

    Space Complexity: O(n)

    Method#3: Using Recursive method.

    Algorithm

    1. Sort the list of strings by length.
    2. Initialize an empty result list.
    3. For each string in the sorted list: a. Check if the string is a redundant substring of any of the remaining strings in the list (i.e., any string that comes after it in the sorted list). If it is, skip the string and move on to the next one. b. If the string is not redundant, add it to the result list.
    4. Return the result list.
    Python3
    def remove_redundant_substrings(strings):
        # Base case: if the list is empty or has only one element, return it
        if len(strings) <= 1:
            return strings
    
        # Sort the list by length to simplify the recursion
        strings.sort(key=len)
    
        # Take the first string and remove it from the list
        current_string = strings.pop(0)
    
        # Recursively remove redundant substrings from the rest of the list
        remaining_strings = remove_redundant_substrings(strings)
    
        # Check if the current string is a redundant substring of any of the remaining strings
        for string in remaining_strings:
            if current_string in string:
                return remaining_strings
    
        # If the current string is not redundant, add it back to the list and return it
        remaining_strings.append(current_string)
        return remaining_strings
    test_list = ["Gfg", "Gfg is best", "Geeks", "Gfg is for Geeks"]
    print("The original list : " + str(test_list))
    
    res = remove_redundant_substrings(test_list)
    
    print("The filtered list : " + str(res))
    

    Output
    The original list : ['Gfg', 'Gfg is best', 'Geeks', 'Gfg is for Geeks']
    The filtered list : ['Gfg is for Geeks', 'Gfg is best']

    The time complexity of this algorithm is O(n^2 * m), where n is the number of strings in the input list and m is the maximum length of a string in the list. The worst case occurs when all the strings are unique and none of them are a substring of any of the others, so we have to check each string against every other string in the list. The sorting step takes O(n log n) time, and the string comparisons take O(m) time each, so the overall time complexity is O(n^2 * m).

    The auxiliary space of this algorithm is O(n * m), because we need to store a copy of each string in the input list (which takes O(n * m) space), plus the result list (which can also take up to O(n * m) space if all the strings are unique and none of them are redundant substrings of any of the others

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python list-programs
    • Python string-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences