Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python | Nth Column vertical string in Matrix

    Last Updated : 09 Apr, 2023
    Comments
    Improve
    Suggest changes
    Like Article
    Like
    Report

    Sometimes, while working with Python Matrix, we can have a problem in which we need to access the Matrix in vertical form and extract strings from the same, that too as a string, not merely as a list of characters. This task has its application in gaming in which we need to extract strings during crosswords. Let's discuss a way in which this task can be performed. 

    Method 1: Using list comprehension + join() 

    We achieve the task in this method in 2 steps. In 1st step, the Nth column elements are extracted using list comprehension. In 2nd step, these elements are joined together to perform the characters-to-string conversion. 

    Python3
    # Python3 code to demonstrate working of
    # Nth Column vertical string in Matrix
    # Using join() + list comprehension
    
    # initializing list
    test_list = [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    
    # printing list
    print("The original list : " + str(test_list))
    
    # initializing Nth column
    N = 1
    
    # Nth Column vertical string in Matrix
    # Using join() + list comprehension
    temp = [sub[N] for sub in test_list]
    res = "".join(temp)
    
    # Printing result
    print("Constructed vertical string : " + str(res))
    

    Output
    The original list : [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    Constructed vertical string : gfg
    See More

    Time complexity: O(n), where n is the length of the input list test_list. 
    Auxiliary space: O(1) because the amount of extra space used is constant and does not depend on the size of the input. Specifically, the only extra space used is for the temp list and the res string, both of which require O(n) space, where n is the length of test_list. 

    Method 2: Using numpy() 

    Note: Install numpy module using command "pip install numpy"

    Another approach could be using numpy, which can extract the Nth column of a matrix as a numpy array and then use numpy.array2string() to convert the array to a string. This approach would have a time complexity of O(n) where n is the number of rows in the matrix, and a space complexity of O(n) as well, as it requires a new numpy array to be created.

    Python3
    import numpy as np
    test_matrix = np.array([['a', 'g', 'v'], ['e', 'f', 8], ['b', 'g', 0]])
    
    # initializing Nth column
    N = 1
    # Extracting Nth column
    temp = test_matrix[:, N]
    # Converting numpy array to string
    # Printing result
    print("Constructed vertical string : " + "".join(temp))
    

    Output:

    Constructed vertical string : gfg

    Time complexity: O(n) 
    Auxiliary space: O(n)

    Method 3: Using for loop:

    This method iterates through each tuple in the list and appends the Nth element to a string. Finally, the resulting string is printed as the vertical string.

    Python3
    # initializing list
    test_list = [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    
    # printing list
    print("The original list : " + str(test_list))
    
    # initializing Nth column
    N = 1
    
    # Nth Column vertical string in Matrix
    # Using for loop
    res = ""
    for sub in test_list:
        res += str(sub[N])
    
    # Printing result
    print("Constructed vertical string : " + str(res))
    

    Output
    The original list : [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    Constructed vertical string : gfg

    Time complexity: O(N), where N is the number of tuples in the list. 
    Auxiliary Space: O(N), where N is the number of tuples in the list.

    Method 4: Iterating through the rows of the matrix and appending the Nth character to a string variable.

    In this approach, initialize an empty string variable res and iterate through the rows of the matrix using a for loop. For each row, append the Nth character (i.e., the character at index N) to the res variable. Finally, print the constructed vertical string.

    Approach:

    • Initialize a list of tuples test_list that represents the matrix.
    • Print the original list to verify it is correct.
    • Initialize the value of N to the index of the column we want to extract.
    • Initialize an empty string variable res to store the extracted vertical string.
    • Iterate through each row in the test_list matrix using a for loop.
      • For each row, append the Nth character (i.e., the character at index N) to the res variable.
      • After iterating through all rows, print the constructed vertical string
    • Print the res.
    Python3
    # Python3 code to demonstrate working of 
    # Nth Column vertical string in Matrix 
    # Using for loop
    
    # initializing list 
    test_list = [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)] 
    
    # printing list 
    print("The original list : " + str(test_list)) 
    
    # initializing Nth column 
    N = 1
    
    # Using for loop
    res = ''
    for row in test_list:
        res += row[N]
    
    # Printing result 
    print("Constructed vertical string : " + str(res)) 
    

    Output
    The original list : [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    Constructed vertical string : gfg

    The time complexity of this approach is O(n), where n is the number of rows in the matrix. 
    The auxiliary space complexity is O(1), as we are only using a single string variable to store the result.

    Method 5: Using map() and str.join()

    Approach:

    1. Initialize the list of tuples with the required values.
    2. Initialize the Nth column value that needs to be extracted.
    3. Use the map() function to extract the Nth column from each tuple.
    4. Convert the map object to a list.
    5. Join the extracted characters using the join() method.
    6. Return the constructed vertical string.
    7. Print the result.
    Python3
    # Python3 code to demonstrate working of
    # Nth Column vertical string in Matrix
    # Using map() and join()
    
    # initializing list
    test_list = [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    
    # printing list
    print("The original list : " + str(test_list))
    
    # initializing Nth column
    N = 1
    
    # Using map() and join()
    res = ''.join(list(map(lambda x: x[N], test_list)))
    
    # Printing result
    print("Constructed vertical string : " + str(res))
    

    Output
    The original list : [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    Constructed vertical string : gfg

    Time complexity: O(n), where n is the number of tuples in the list.
    Auxiliary space: O(n), where n is the number of tuples in the list.

    Method 6: Using pandas library

    Here's another approach that uses the pandas library to extract the Nth column of the input matrix and string concatenation to construct the final vertical string.

    Step-by-step approach:

    1. Import the pandas library.
    2. Initialize the input list test_list as a pandas DataFrame.
    3. Initialize the variable N to specify the column index to extract.
    4. Use the iloc attribute of the DataFrame to extract the Nth column as a Series object.
    5. Use the str.cat() method of the Series object to concatenate the elements into a single string.
    6. Print the final vertical string.
    Python3
    import pandas as pd
    
    # initializing list
    test_list = [('a', 'g', 'v'), ('e', 'f', 8), ('b', 'g', 0)]
    
    # convert list to DataFrame
    df = pd.DataFrame(test_list)
    
    # initializing Nth column
    N = 1
    
    # extract Nth column as a Series object
    col = df.iloc[:, N]
    
    # concatenate elements into a single string
    res = col.str.cat()
    
    # print final vertical string
    print("Constructed vertical string : " + str(res))
    
    OUTPUT:
    Constructed vertical string : gfg

    Time complexity: O(n), where n is the number of elements in the input list.

    Auxiliary space: O(n), to store the elements of the input list as a DataFrame. However, this approach may be more memory-efficient than some of the other methods, especially for very large input lists.

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python Programs
    • Python list-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences