Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python | Identical Strings Grouping

    Last Updated : 09 Apr, 2023
    Comments
    Improve
    Suggest changes
    Like Article
    Like
    Report
    See More

    Sometimes, we need to perform the conventional task of grouping some like Strings into a separate list and thus forming a list of list. This can also help in counting and also get the sorted order of elements. Let’s discuss certain ways in which this can be done. 

    Method #1: Using collections.Counter() 

    This particular function can prove to be quite useful to perform this particular task as it counts the frequency of Strings in the list and then we can pair them using the list comprehension. 

    Python3
    # Python3 code to demonstrate
    # Identical Strings Grouping
    # using collections.Counter()
    
    import collections
    
    # initializing list
    test_list = ["Gfg", "best", "is", "Gfg", "is", "best", "Gfg", "best"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # using collections.Counter()
    # Identical Strings Grouping
    temp = collections.Counter(test_list)
    res = [[i] * j for i, j in temp.items()]
    
    # print result
    print("The Strings after grouping are : " + str(res))
    
    Output : 
    The original list : ['Gfg', 'best', 'is', 'Gfg', 'is', 'best', 'Gfg', 'best']
    The Strings after grouping are : [['best', 'best', 'best'], ['Gfg', 'Gfg', 'Gfg'], ['is', 'is']]

    The time complexity of the code is O(n), where n is the length of the input list.

    The auxiliary space complexity of the code is also O(n), as the space required for the Counter object and the resulting list both depend on the number of unique strings in the input list, which can be at most n.

    Method #2: Using itertools.groupby() 

    This problem can easily solved by the traditional groupby functionality that is offered by Python via groupby function, which groups the like elements as suggested by name. 

    Python3
    # Python3 code to demonstrate
    # Identical Strings Grouping
    # using itertools.groupby()
    import itertools
    
    # initializing list
    test_list = ["Gfg", "best", "is", "Gfg", "is", "best", "Gfg", "best"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # using itertools.groupby()
    # Identical Strings Grouping
    res = [list(i) for j, i in itertools.groupby(sorted(test_list))]
    
    # print result
    print("The Strings after grouping are : " + str(res))
    
    Output : 
    The original list : ['Gfg', 'best', 'is', 'Gfg', 'is', 'best', 'Gfg', 'best']
    The Strings after grouping are : [['best', 'best', 'best'], ['Gfg', 'Gfg', 'Gfg'], ['is', 'is']]

    Time Complexity: O(n*n), where n is the number of elements in the list “test_list”.
    Auxiliary Space: O(n), where n is the number of elements in the list “test_list”.

    Time complexity: The time complexity of this code is O(nlogn), where n is the length of the input list test_list.

    Auxiliary space: The auxiliary space used by this code is O(n), where n is the length of the input list test_list. 

    Method #3 : Using count() method

    Python3
    # Python3 code to demonstrate
    # Identical Strings Grouping
    
    # initializing list
    test_list = ["Gfg", "best", "is", "Gfg", "is", "best", "Gfg", "best"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    res=[]
    x=list(set(test_list))
    x.sort()
    for i in x:
        a=[i]*test_list.count(i)
        res.append(a)
    # print result
    print("The Strings after grouping are : " + str(res))
    

    Output
    The original list : ['Gfg', 'best', 'is', 'Gfg', 'is', 'best', 'Gfg', 'best']
    The Strings after grouping are : [['Gfg', 'Gfg', 'Gfg'], ['best', 'best', 'best'], ['is', 'is']]

    Method #4 : Using operator.countOf() method

    Python3
    # Python3 code to demonstrate
    # Identical Strings Grouping
    
    # initializing list
    test_list = ["Gfg", "best", "is", "Gfg", "is", "best", "Gfg", "best"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    res=[]
    x=list(set(test_list))
    x.sort()
    import operator
    for i in x:
        a=[i]*operator.countOf(test_list,i)
        res.append(a)
    # print result
    print("The Strings after grouping are : " + str(res))
    

    Output
    The original list : ['Gfg', 'best', 'is', 'Gfg', 'is', 'best', 'Gfg', 'best']
    The Strings after grouping are : [['Gfg', 'Gfg', 'Gfg'], ['best', 'best', 'best'], ['is', 'is']]

    Time Complexity : O(N)

    Auxiliary Space : O(N)

    METHOD 5: using a dictionary to group identical strings:

    This method creates an empty dictionary res and iterates over the elements of the test_list. For each element s, it checks if it already exists in the dictionary. If it does, it appends s to the list corresponding to the key s. If it doesn't, it creates a new list with s as its only element and assigns it to the key s in the dictionary. Finally, it converts the dictionary values to a list and prints the result.

    Python3
    # Python3 code to demonstrate
    # Identical Strings Grouping
    
    # initializing list
    test_list = ["Gfg", "best", "is", "Gfg", "is", "best", "Gfg", "best"]
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # using dictionary to group identical strings
    res = {}
    for s in test_list:
        if s in res:
            res[s].append(s)
        else:
            res[s] = [s]
    
    # converting dictionary values to list
    res = list(res.values())
    
    # print result
    print("The Strings after grouping are : " + str(res))
    

    Output
    The original list : ['Gfg', 'best', 'is', 'Gfg', 'is', 'best', 'Gfg', 'best']
    The Strings after grouping are : [['Gfg', 'Gfg', 'Gfg'], ['best', 'best', 'best'], ['is', 'is']]

    The time complexity of the above Python code is O(n), where n is the length of the input list test_list

    The auxiliary space complexity of the code is O(k), where k is the number of unique elements in the input list. 

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python Programs
    • Python list-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences