Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python | Group strings at particular element in list

    Last Updated : 06 Mar, 2023
    Comments
    Improve
    Suggest changes
    Like Article
    Like
    Report
    See More

    Sometimes, while working with Python list, we can have a problem in which we have to group strings in a way that at occurrence of particular element, the string list is grouped. This can be a potential problem of day-day programming. Let's discuss certain way in which this problem can be performed. 

    Method 1: Using groupby() + list comprehension + lambda This task can be performed using combination of above functions. In this, we group the elements using groupby() and decision of grouping element logic is done in form of lambda function. 

    Python3
    # Python3 code to demonstrate working of 
    # Group strings at particular element in list 
    # using groupby() + list comprehension + lambda 
    from itertools import groupby 
    
    # initialize lists 
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular'] 
    
    # printing original list 
    print("The original list is : " + str(test_list)) 
    
    # initialize partition element 
    ele = 'is'
    
    # Group strings at particular element in list 
    # using groupby() + list comprehension + lambda 
    res = [list(j) for i, j in groupby(test_list, lambda x:x == ele) if not i] 
    
    # printing result 
    print("Resultant list after grouping : " + str(res)) 
    

    Output
    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    Time complexity: O(n), where n is the length of the list "test_list".
    Auxiliary Space: O(m), where m is the number of resulting sublists in "res".

    Method 2: Using re.split() function:

    Using the re.split() function to split the list based on the grouping element is another approach. The time complexity would be O(n) as it needs to iterate through the list once, and the space complexity would be O(n) as it creates new sublists to store the grouped strings.

    It's important to note that using the re.split() function would require an import of the re module, and the implementation would involve a regular expression matching the desired grouping element to split the list by.

    Python3
    import re
    
    # initialize list
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular']
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # initialize partition element
    ele = 'is'
    
    # Group strings at particular element in list
    # using re.split()
    res = [i.split() for i in re.split(ele, ' '.join(test_list))]
    
    # printing result
    print("Resultant list after grouping : " + str(res))
    
    #This code is contributed by Edula Vinay Kumar Reddy
    

    Output
    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    This code first converts the list to a string, then splits the string by the grouping element 'is' using the re.split() function. The resulting list will be sublists with strings grouped based on the occurrence of 'is' in the original list

    Time complexity: The time complexity of this code is O(n), where n is the length of the input list test_list.
    Auxiliary space: The auxiliary space complexity of this code is O(n), where n is the length of the input list test list

    Method 3: Using split(),join() methods

    Python3
    # Python3 code to demonstrate working of
    # Group strings at particular element in list
    
    # initialize lists
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular']
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # initialize partition element
    ele = 'is'
    
    # Group strings at particular element in list
    def fun(y):
        p=[]
        for i in y:
            if len(i)!=0:
                p.append(i)
        return p
    test_list="*".join(test_list)
    x=test_list.split(ele)
    res=[]
    for i in x:
        y=i.split("*")
        res.append(fun(y))
    # printing result
    print("Resultant list after grouping : " + str(res))
    

    Output
    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    Time Complexity : O(N*N)
    Auxiliary Space : O(N)

    Method 4: Using a loop and the enumerate function 

    The idea is to use a loop and the enumerate function to iterate through the original list and split it into sublists based on the partition element. It uses a start index variable to keep track of the beginning of each sublist, and appends each sublist to a result list as it is generated.

    Implementation:

    Python3
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular']
    ele = 'is'
    
    # Group strings at particular element in list
    res = []
    start = 0
    for i, item in enumerate(test_list):
        if item == ele:
            res.append(test_list[start:i])
            start = i+1
    res.append(test_list[start:])
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # printing result
    print("Resultant list after grouping : " + str(res))
    

    Output
    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    Time Complexity: O(N),where n is the length of the input list.
    Auxiliary Space: O(N)

    Method 5: Using itertools.groupby()

    Algorithm:

    1. Import groupby from itertools module.
    2. Initialize an empty list res.
    3. Use groupby method to group the elements of the list based on the element ele.
    4. Check if the key is not equal to the element ele.
    5. If the key is not equal to ele, then append the corresponding group to the result list.
    6. Return the result list.
    Python3
    from itertools import groupby
    
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular']
    ele = 'is'
    
    res = [list(group) for key, group in groupby(test_list, lambda x: x == ele) if not key]
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # printing result
    print("Resultant list after grouping : " + str(res))
    

    Output
    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    Time complexity: O(n), where n is the length of the input list.
    Auxiliary Space: O(n), where n is the length of the input list.

    Method 6: using numpy:

    Algorithmic :

    1.Convert the input list into a numpy array. Time complexity: O(N), where N is the length of the input list.
    2.Use np.where to get the indices of the occurrences of the given element in the array. Time complexity: O(N), where N is the length of the input list.
    3.Loop through the indices and split the array into sub-arrays based on those indices. Time complexity: O(M), where M is the number of 4.occurrences of the given element in the input list.
    5.Append each sub-array to the output list. 

    Python3
    import numpy as np
    
    test_list = ['gfg', 'is', 'best', 'and', 'is', 'popular']
    ele = 'is'
    
    split_indices = np.where(np.array(test_list) == ele)[0]
    res = []
    start = 0
    for index in split_indices:
        res.append(test_list[start:index])
        start = index + 1
    res.append(test_list[start:])
    
    print("The original list is : " + str(test_list))
    print("Resultant list after grouping : " + str(res))
    #This code is contributed by Jyothi pinjala
    

    Output:

    The original list is : ['gfg', 'is', 'best', 'and', 'is', 'popular']
    Resultant list after grouping : [['gfg'], ['best', 'and'], ['popular']]

    Time Complexity: The time complexity of this algorithm is O(N + M), where N is the length of the input list and M is the number of occurrences of the given element in the input list.

    Space Complexity: The space complexity of this algorithm is O(M), where M is the number of occurrences of the given element in the input list. This is because we need to store the indices of the occurrences in memory in order to split the list into sub-lists. Additionally, we need to store the output list, which also takes up O(M) space in the worst case.

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python list-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences