Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python - Formable Strings Count in Matrix

    Last Updated : 23 Jul, 2025
    Comments
    Improve
    Suggest changes
    1 Likes
    Like
    Report
    See More

    Given strings matrix, the task is to write a Python program to count strings that can be made from letters from the given list.

    Examples:

    Input : test_list = [["gfg", "best"], ["all", "love", "gfg"], 
    ["gfg", "is", "good"], ["geeksforgeeks"]], tar_list = ["g", "f", "s", "b", "o", "d", "e", "t"] 
    Output : 5 
    Explanation : gfg, best, gfg, gfg, good are strings that can be formed from target list chars.
     
    
    Input : test_list = [["gfg", "best"], ["all", "love", "gfg"], ["gfg", "is", "good"], 
     ["geeksforgeeks"]], tar_list = ["g", "f", "s", "b", "d", "e", "t"] 
    Output : 4 
    Explanation : gfg, best, gfg, gfg are strings that can be formed from target list chars. 

    Method #1 : Using loop + all() Method 

    In this, we perform the task of iterating through the loop using for loop, all() is used to check if each element of string has all the letters from the target list. If found, the counter is incremented.

    Python3
    # Python3 code to demonstrate working of
    # Formable Strings Count in Matrix
    # Using loop
    
    # initializing list
    test_list = [["gfg", "best"], ["all", "love", "gfg"],
                 ["gfg", "is", "good"], ["geeksforgeeks"]]
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # initializing target list
    tar_list = ["g", "f", "s", "b", "o", "d", "e", "t"]
    
    res = 0
    for sub in test_list:
        for ele in sub:
    
            # checking for all elements present using all()
            if all(el in tar_list for el in ele):
                res += 1
    
    # printing result
    print("The computed count : " + str(res))
    

    Output
    The original list is : [['gfg', 'best'], ['all', 'love', 'gfg'], ['gfg', 'is', 'good'], ['geeksforgeeks']]
    The computed count : 5

    Time Complexity: O(n*n)
    Auxiliary Space: O(n)

    Method #2: Using list comprehension + all() + sum()

    In this, the problem is solved in one line using list comprehension, all() is used to check for all characters present and sum() is used to compute the number of strings after strings filtration.

    Python3
    # Python3 code to demonstrate working of
    # Formable Strings Count in Matrix
    # Using list comprehension + all() + sum()
    
    # initializing list
    test_list = [["gfg", "best"], ["all", "love", "gfg"],
                 ["gfg", "is", "good"], ["geeksforgeeks"]]
    
    # printing original list
    print("The original list is : " + str(test_list))
    
    # initializing target list
    tar_list = ["g", "f", "s", "b", "o", "d", "e", "t"]
    
    # computing summation using sum()
    # list comprehension used to provide one liner solution
    res = sum([sum([1 for ele in sub if all(el in tar_list for el in ele)])
               for sub in test_list])
    
    # printing result
    print("The computed count : " + str(res))
    

    Output
    The original list is : [['gfg', 'best'], ['all', 'love', 'gfg'], ['gfg', 'is', 'good'], ['geeksforgeeks']]
    The computed count : 5

    Time Complexity: O(n3)
    Auxiliary Space: O(n)

    Method #3: Using re

    Another approach to solve this problem is by using the Python re module. The re module provides functionality to search a string for a pattern and extract the matched text. To solve this problem, we can create a regular expression pattern by concatenating all the characters in the target list, and then search each string in the matrix for this pattern. If a match is found, we increment the count of formable strings.

    Here is an implementation of this approach in Python:

    Python3
    import re
    
    # Initializing list
    test_list = [["gfg", "best"], ["all", "love", "gfg"], ["gfg", "is", "good"], ["geeksforgeeks"]]
    
    # Initializing target list
    tar_list = "gfsobdet"
    
    # Creating regular expression pattern from target list
    pattern = '[' + tar_list + ']+'
    
    # Searching for pattern in each string of the matrix
    res = 0
    for sub in test_list:
        for ele in sub:
            if re.fullmatch(pattern, ele):
                res += 1
    
    # Printing result
    print("The computed count: ", res)
    

    Output
    The computed count:  5

    Time complexity: O(n2 * m), where n is the number of strings in the matrix, and m is the average length of the strings. 
    Auxiliary space: O(n).

    Note that this approach is not as efficient as the first two methods, as the regular expression matching can be slower than the other two methods.

    Method 4:  Use nested for loops and a dictionary to keep track of the frequency of each target character.

    Step-by-step approach:

    • Initialize a dictionary to keep track of the frequency of each target character.
    • Loop through each element in the target list and increment the frequency of that character in the dictionary.
    • Initialize a variable to keep track of the count of formable strings, starting with a value of 0.
    • Loop through each sublist in the test list.
    • For each sublist, loop through each element and check if all of the characters in the element can be formed using the characters in the dictionary. To do this, use another loop to iterate through each character in the element and check if its frequency in the dictionary is greater than 0. If any character cannot be formed, break out of the loop and move on to the next element.
    • If all characters can be formed, increment the count of formable strings.
    • After looping through all sublists, return the count of formable strings.
    Python3
    def count_formable_strings(test_list, tar_list):
        # Step 1
        freq_dict = {}
        for char in tar_list:
            freq_dict[char] = freq_dict.get(char, 0) + 1
        
        # Step 2
        count = 0
        
        # Step 4
        for sublist in test_list:
            # Step 5
            for element in sublist:
                for char in element:
                    if char not in freq_dict or freq_dict[char] == 0:
                        break
                else:
                    count += 1
        
        # Step 7
        return count
    
    
    # Example inputs and outputs
    test_list = [["gfg", "best"], ["all", "love", "gfg"], ["gfg", "is", "good"], ["geeksforgeeks"]]
    tar_list = ["g", "f", "s", "b", "o", "d", "e", "t"]
    print("The original list is:", test_list)
    print("The computed count is:", count_formable_strings(test_list, tar_list))
    

    Output
    The original list is: [['gfg', 'best'], ['all', 'love', 'gfg'], ['gfg', 'is', 'good'], ['geeksforgeeks']]
    The computed count is: 5

    Time complexity: O(nm*k), where n is the number of sublists in the test list, m is the maximum length of a sublist, and k is the length of the target list. 
    Auxiliary space: O(k), where k is the length of the target list. 

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python Programs
    • Python list-programs
    • Python string-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences