Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Python | Average String length in list

    Last Updated : 12 Jul, 2025
    Comments
    Improve
    Suggest changes
    Like Article
    Like
    Report

    Sometimes, while working with data, we can have a problem in which we need to gather information of average length of String data in list. This kind of information might be useful in Data Science domain. Let's discuss certain ways in which this task can be performed. 

    Method #1 : Using list comprehension + sum() + len() The combination of above functions can be used to perform this task. In this we compute lengths of all Strings using list comprehension and then divide the sum by length of list using len() and sum(). 

    Python3
    # Python3 code to demonstrate working of
    # Average String lengths in list
    # using list comprehension + sum() + len()
    
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # Average String lengths in list
    # using list comprehension + sum() + len()
    temp = [len(ele) for ele in test_list]
    res = 0 if len(temp) == 0 else (float(sum(temp)) / len(temp))
    
    # printing result
    print("The Average length of String in list is : " + str(res))
    

    Output
    The original list : ['gfg', 'is', 'best', 'for', 'geeks']
    The Average length of String in list is : 3.4
    

    Time Complexity: O(n), where n is length of list.
    Auxiliary Space: O(1)

    Method #2 : Using map() + sum() + len() The combination of above functions can also be used to perform this task. In this, we compute lengths using map(). Rest all the logic is similar to above method. 

    Python3
    # Python3 code to demonstrate working of
    # Average String lengths in list
    # using map() + sum() + len()
    
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # Average String lengths in list
    # using map() + sum() + len()
    res = sum(map(len, test_list))/float(len(test_list))
    
    # printing result
    print("The Average length of String in list is : " + str(res))
    

    Output
    The original list : ['gfg', 'is', 'best', 'for', 'geeks']
    The Average length of String in list is : 3.4
    

    Time Complexity: O(n), where n is the length of the input list. This is because we’re using map() + sum() + len() which has a time complexity of O(n) in the worst case.
    Auxiliary Space: O(1), as we’re using constant additional space.

    Method #3 : Using len() and mean() method of statistics module

    Python3
    # Python3 code to demonstrate working of
    # Average String lengths in list
    import statistics
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    
    # printing original list
    print("The original list : " + str(test_list))
    
    # Average String lengths in list
    x=[]
    for i in test_list:
        x.append(len(i))
    res=statistics.mean(x)
    # printing result
    print("The Average length of String in list is : " + str(res))
    

    Output
    The original list : ['gfg', 'is', 'best', 'for', 'geeks']
    The Average length of String in list is : 3.4
    

    Time complexity: O(n*n), where n is the length of the numbers list. The len() and mean() method of statistics module have a time complexity of O(n)
    Auxiliary Space: O(1), constant space is required

    Method #4 : Using reduce()

    Python3
    from functools import reduce
    
    # Python3 code to demonstrate working of
    # Average String lengths in list
    # using reduce()
     
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
     
    # printing original list
    print("The original list : " + str(test_list))
     
    # Average String lengths in list
    # using reduce()
    res = reduce(lambda x, y: x + y, map(len, test_list))/len(test_list)
     
    # printing result
    print("The Average length of String in list is : " + str(res))
    
    #this code is contributed by edula vinay kumar reddy
    

    Output
    The original list : ['gfg', 'is', 'best', 'for', 'geeks']
    The Average length of String in list is : 3.4
    

    In this method, we first use map() to calculate the length of each string in the list. Then, we use reduce() function to get the sum of all lengths. Finally, we divide the sum by the length of the list to get the average length.

    Time Complexity: O(n)
    Auxiliary Space: O(1)

    Method#5:Using list comprehension

    Python3
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    # calculate total length of all strings in the list
    total_length = sum([len(string) for string in test_list])
    
    # calculate average
    average = total_length/len(test_list)
    
    # print result
    print("The Average length of String in list is : " + str(average))
    

    Output
    The Average length of String in list is : 3.4
    

    Time Complexity: O(n)
    Auxiliary Space: O(1)

    Method#6: Using For loop.

    Python3
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    total_length = 0
    # calculate total length of all strings in the list using for loop
    for string in test_list:
        total_length += len(string)
        
    # calculate average
    average = total_length/len(test_list)
    
    # print result
    print("The Average length of String in list is : " + str(average))
    #this code contributed by tvsk
    

    Output
    The Average length of String in list is : 3.4
    

    Time Complexity: O(n)
    Auxiliary Space: O(1)

    Method#7: Using numpy: 

    1. Import the numpy library as np.
    2. Define a function named "avg_str_len" that takes a list of strings as input.
    3. Within the function, use a list comprehension to create a list of the lengths of the strings in the input list.
    4. Use the np.mean() function to compute the average of the list of string lengths.
    5. Return the result of step 4 from the function.
    6. Define a list of strings to test the function.
    7. Call the avg_str_len function with the test list as an argument and store the result in a variable named "result".
    8. Print the original list of strings and the computed average length of the strings.

    Python3
    import numpy as np
    def avg_str_len(lst):
        return np.mean([len(s) for s in lst])
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    result = avg_str_len(test_list)
    print("The original list:", test_list)
    print("The average length of strings in the list:", result)
    #This code is contributed by Jyothi pinjala.
    

    Output:

    The original list: ['gfg', 'is', 'best', 'for', 'geeks']
    The average length of strings in the list: 3.4

    The time complexity :O(n), where n is the length of the input list of strings. This is because the code iterates through each string in the list exactly once to calculate its length, and then computes the average of these lengths using the numpy mean() function, which has a time complexity of O(n).

    The space complexity :O(n), where n is the length of the input list of strings. This is because the list comprehension creates a new list of the same length as the input list to store the lengths of the strings, and this list is stored in memory until the numpy mean() function is called. The numpy mean() function creates a new scalar object to store the average length of the strings, which is returned by the function. Thus, the overall space complexity is also O(n).

    Method#8:Using enumerate()

    Algorithm:

    1. Initialize the input list test_list.
    2. Calculate the total length of all strings in the list using list comprehension and sum() function, and store the result in total_length.
    3. Calculate the average by dividing total_length by the length of test_list.
    4. Print the result using the print() function.
    Python3
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    total_length = 0
    
    # calculate total length of all strings in the list
    for i, string in enumerate(test_list):
        total_length += len(string)
    
    # calculate average
    average = total_length / len(test_list)
    
    # print result
    print("The Average length of String in list is : " + str(average))
    #This code is contributed by Vinay Pinjala.
    

    Output
    The Average length of String in list is : 3.4
    

    Time Complexity:
    The time complexity of this algorithm is O(n), where n is the number of strings in the input list. This is because the list comprehension and sum() functions iterate over each string in the list once, giving us a linear time complexity.

    Auxiliary Space:
    The space complexity of this algorithm is O(1), as we are only storing a constant number of variables (test_list, total_length, and average) in memory regardless of the size of the input list.

    Method#8: Using pandas package

    Note: first install the pandas package by using: pip install pandas

    • Convert the list of strings to a pandas Series.
    • Apply the str.len() method to get the length of each string.
    • Calculate the average using the mean() method.
       
    Python3
    import pandas as pd
    
    # initialize list
    test_list = ['gfg', 'is', 'best', 'for', 'geeks']
    
    # calculating the average using pandas package
    aver = pd.Series(test_list).apply(len).mean()
    
    # print result
    print("The Average length of String in list is : " + str(aver))
    


    Output

    The Average length of String in list is : 3.4

    Time Complexity: O(N) where N is the number of strings in the list.
    Auxiliary Space: O(N) where N is the number of strings in the list.

    Create Quiz

    M

    manjeet_04
    Improve

    M

    manjeet_04
    Improve
    Article Tags :
    • Python
    • Python Programs
    • Python list-programs

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences