Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Pairplot in Matplotlib

    Last Updated : 23 Jul, 2025
    Comments
    Improve
    Suggest changes
    1 Likes
    Like
    Report

    Pair Plot is a type of chart that shows how different numbers in a dataset relate to each other. It creates multiple small scatter plots, comparing two variables at a time. While Seaborn has a ready-made pairplot() function to quickly create this chart, Matplotlib allows more control to customize how the plot looks and behaves. A Pair Plot (also called a scatterplot matrix) consists of:

    • Scatter plots for each pair of numerical variables.
    • Histograms (or kernel density plots) on the diagonal, representing the distribution of individual variables.

    This visualization helps in identifying:

    • Linear and non-linear relationships between features.
    • Clusters or groups within data.
    • Potential outliers.

    Creating a pair plot using matplotlib

    To get started, we first need to import the necessary libraries.

    import matplotlib.pyplot as plt

    import pandas as pd

    import numpy as np

    • matplotlib.pyplot: Used for creating visualizations.
    • pandas: Helps in handling structured data (dataframes).
    • numpy: Useful for generating numerical data.

    Implementation:

    Python
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    
    np.random.seed(42)
    data = pd.DataFrame({
        'Feature 1': np.random.rand(50),
        'Feature 2': np.random.rand(50),
        'Feature 3': np.random.rand(50),
        'Feature 4': np.random.rand(50)
    })
    
    # Number of features
    num_features = len(data.columns)
    
    # Create Subplots Grid
    fig, axes = plt.subplots(num_features, num_features, figsize=(10, 10))
    
    # Loop through each pair of features
    for i in range(num_features):
        for j in range(num_features):
            ax = axes[i, j]
            
            if i == j:
                # Diagonal: Histogram of the feature
                ax.hist(data.iloc[:, i], bins=15, color='skyblue', edgecolor='black')
            else:
                # Scatter plot for feature pairs
                ax.scatter(data.iloc[:, j], data.iloc[:, i], alpha=0.7, s=10, color="blue")
    
            # Set labels on the left and bottom axes
            if j == 0:
                ax.set_ylabel(data.columns[i], fontsize=10)
            if i == num_features - 1:
                ax.set_xlabel(data.columns[j], fontsize=10)
    
            # Remove ticks for a cleaner look
            ax.set_xticks([])
            ax.set_yticks([])
    
    # Adjust layout
    plt.tight_layout()
    plt.show()
    

    Output

    download

    Explanation:

    • Data Generation: 4 features × 50 values (0-1) stored in a Pandas DataFrame (np.random.seed(42)).
    • Subplots Grid: 4×4 layout (plt.subplots()), with histograms on the diagonal (i == j) and scatter plots elsewhere (i ≠ j).
    • Histograms: ax.hist() with 15 bins, skyblue fill, black edges for clarity.
    • Scatter Plots: ax.scatter() with alpha=0.7, s=10, blue color to show relationships.
    • Formatting: Labels only on leftmost column (j == 0) & bottom row (i == num_features - 1). Ticks removed for a clean look. plt.tight_layout() prevents overlap.
    • plt.show() renders the final visualization.

    Advantages of pair plot in matplotlib

    • Customizability: Unlike Seaborn’s pairplot(), Matplotlib allows full control over plot styling.
    • Better Integration: Works seamlessly within larger Matplotlib-based visualizations.
    • Flexibility: Can modify elements like colors, markers, line styles, and annotations easily.

    Enhancing the pair plot

    To improve the visualization, consider:

    • Adding regression lines to scatter plots.
    • Using different colors to highlight categories in the dataset.
    • Replacing histograms with kernel density estimation (KDE) plots.

    Example:

    Python
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    
    np.random.seed(42)
    data = pd.DataFrame(np.random.rand(50, 4), columns=['Feature 1', 'Feature 2', 'Feature 3', 'Feature 4'])
    
    # Number of features
    num_features = len(data.columns)
    
    # Create figure
    fig, axes = plt.subplots(num_features, num_features, figsize=(10, 10))
    
    # Loop through each pair of features
    for i in range(num_features):
        for j in range(num_features):
            ax = axes[i, j]
    
            if i == j:
                # Plot histogram on the diagonal
                ax.hist(data.iloc[:, i], bins=10, color="skyblue", edgecolor="black")
            else:
                # Scatter plot
                x = data.iloc[:, j]
                y = data.iloc[:, i]
                ax.scatter(x, y, alpha=0.7, s=10, color="blue")
    
                # Add Regression Line
                m, b = np.polyfit(x, y, 1)  # Linear regression
                ax.plot(x, m*x + b, color="red", linewidth=1)
    
            # Labels
            if j == 0:
                ax.set_ylabel(data.columns[i], fontsize=10)
            if i == num_features - 1:
                ax.set_xlabel(data.columns[j], fontsize=10)
    
            # Hide ticks for cleaner look
            ax.set_xticks([])
            ax.set_yticks([])
    
    # Adjust layout
    plt.tight_layout()
    plt.show()
    

    Output:

    output11


    Explanation:

    • Data Preparation: Random values are generated for four features using NumPy and Pandas DataFrame stores the dataset.
    • Creating Subplots: A 4×4 grid of subplots is created to display the pairwise relationships. plt.subplots(num_features, num_features, figsize=(10, 10)) sets up the grid layout.
    • Plotting the Pair Plot: If i == j, a histogram is plotted on the diagonal using ax.hist(). If i ≠ j, a scatter plot is created using ax.scatter().
    • Adding Regression Lines: The np.polyfit(x, y, 1) function computes the slope (m) and intercept (b) of the regression line. The ax.plot(x, m*x + b, color="red", linewidth=1) function overlays a red regression line on the scatter plot.
    • Labels are added to only the leftmost and bottom plots. Ticks are hidden for a clean design.
    • plt.tight_layout() ensures proper spacing for readability.
    Create Quiz

    V

    vishakshx339
    Improve

    V

    vishakshx339
    Improve
    Article Tags :
    • Python

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences