Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    numpy.sum() in Python

    Last Updated : 28 Aug, 2024
    Comments
    Improve
    Suggest changes
    6 Likes
    Like
    Report

    This function returns the sum of array elements over the specified axis.

    Syntax: numpy.sum(arr, axis, dtype, out):

    Parameters: 

    • arr: Input array. 
    • axis: The axis along which we want to calculate the sum value. Otherwise, it will consider arr to be flattened(works on all the axes). axis = 0 means along the column and axis = 1 means working along the row. 
    • out: Different array in which we want to place the result. The array must have the same dimensions as the expected output. The default is None. 
    • initial : [scalar, optional] Starting value of the sum. 

    Return: Sum of the array elements (a scalar value if axis is none) or array with sum values along the specified axis.

    Example 1: 

    This Python program uses numpy.sum() to calculate the sum of a 1D array. It demonstrates summing with different data types (uint8 and float32) and checks if the result's data type matches np.uint and np.float. The output shows how the sum can vary with different types.

    Python
    # Python Program illustrating 
    # numpy.sum() method
    import numpy as np 
    	
    # 1D array 
    arr = [20, 2, .2, 10, 4] 
    
    print("\nSum of arr : ", np.sum(arr)) 
    
    print("Sum of arr(uint8) : ", np.sum(arr, dtype = np.uint8)) 
    print("Sum of arr(float32) : ", np.sum(arr, dtype = np.float32))
    
    print ("\nIs np.sum(arr).dtype == np.uint : ", 
    	np.sum(arr).dtype == np.uint) 
    
    print ("Is np.sum(arr).dtype == np.float : ", 
    	np.sum(arr).dtype == np.float) 
    

    Output:

    Sum of arr :  36.2
    Sum of arr(uint8) : 36
    Sum of arr(float32) : 36.2

    Is np.sum(arr).dtype == np.uint : False
    Is np.sum(arr).dtype == np.float : True

    Example 2: 

    This Python program uses NumPy to compute the sum of a 2D array arr with different data types. It demonstrates the use of np.sum() to calculate the sum of elements in arr and outputs results for different data types (uint8 and float32). It also checks if the sum's data type matches np.uint or np.float.

    Python
    # Python Program illustrating 
    # numpy.sum() method
    import numpy as np 
    	
    # 2D array 
    arr = [[14, 17, 12, 33, 44], 
    	[15, 6, 27, 8, 19], 
    	[23, 2, 54, 1, 4,]] 
    
    print("\nSum of arr : ", np.sum(arr)) 
    
    print("Sum of arr(uint8) : ", np.sum(arr, dtype = np.uint8)) 
    print("Sum of arr(float32) : ", np.sum(arr, dtype = np.float32))
    
    print ("\nIs np.sum(arr).dtype == np.uint : ", 
    				np.sum(arr).dtype == np.uint) 
    
    print ("Is np.sum(arr).dtype == np.float : ", 
    			np.sum(arr).dtype == np.float) 
    

    Output:

    Sum of arr :  279
    Sum of arr(uint8) : 23
    Sum of arr(float32) : 279.0

    Is np.sum(arr).dtype == np.uint : False
    Is np.sum(arr).dtype == np.float : False

    Example 3: 

    This Python program uses numpy.sum() to compute the sum of elements in a 2D array. It calculates the total sum, sums along rows (axis=0), sums along columns (axis=1), and sums along columns while keeping the dimensions (keepdims=True).

    Python
    # Python Program illustrating 
    # numpy.sum() method 
    import numpy as np 
    	
    # 2D array 
    arr = [[14, 17, 12, 33, 44], 
    	[15, 6, 27, 8, 19], 
    	[23, 2, 54, 1, 4,]] 
    
    print("\nSum of arr : ", np.sum(arr)) 
    print("Sum of arr(axis = 0) : ", np.sum(arr, axis = 0)) 
    print("Sum of arr(axis = 1) : ", np.sum(arr, axis = 1))
    
    print("\nSum of arr (keepdimension is True): \n",
    	np.sum(arr, axis = 1, keepdims = True))
    

    Output:

    Sum of arr :  279
    Sum of arr(axis = 0) : [52 25 93 42 67]
    Sum of arr(axis = 1) : [120 75 84]

    Sum of arr (keepdimension is True):
    [[120]
    [ 75]
    [ 84]]
    Create Quiz

    M

    mohit gupta_omg :)
    Improve

    M

    mohit gupta_omg :)
    Improve
    Article Tags :
    • Python
    • Python-numpy
    • Python numpy-Mathematical Function

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences