Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Uniform Distribution in NumPy

    Last Updated : 08 Dec, 2025
    Comments
    Improve
    Suggest changes
    5 Likes
    Like
    Report

    A Uniform Distribution is used when every value in a given range has an equal probability of occurring. NumPy provides the numpy.random.uniform() method to generate such values for simulations, sampling, and numerical experiments.

    Example: Here’s the example demonstrating how to generate one random value from a Uniform Distribution.

    Python
    import numpy as np
    num = np.random.uniform()
    print(num)
    

    Output
    0.6869717010984568
    

    Explanation: This generates a random floating-point number between 0 and 1, the default uniform range.

    Syntax

    numpy.random.uniform(low=0.0, high=1.0, size=None)

    Parameters:

    • low: Lower bound of the range (inclusive).
    • high: Upper bound of the range (exclusive).
    • size: Shape of the output array.

    Examples

    Example 1: This example shows how to generate five random numbers between 0 and 1 multiple uniform distribution values.

    Python
    import numpy as np
    arr = np.random.uniform(size=5)
    print(arr)
    

    Output
    [0.11403523 0.69111039 0.92330809 0.65533514 0.6227924 ]
    

    Explanation: np.random.uniform(size=5) creates an array of 5 random numbers in the range [0, 1).

    Example 2: In this example, we generate five random numbers in the range 10 to 20 using the numpy.random.uniform() method.

    Python
    import numpy as np
    vals = np.random.uniform(10, 20, size=5)
    print(vals)
    

    Output
    [15.33364215 15.62793284 19.66237254 18.56727821 11.27919983]
    

    Explanation: This creates an array vals with 5 values sampled uniformly from the interval 10 ≤ x < 20 using np.random.uniform(10, 20, size=5).

    Using NumPy Generator

    NumPy now recommends using the Generator class for random number generation instead of the legacy numpy.random functions. The Generator provides better randomness, reproducibility, and performance. You can create a Generator instance using np.random.default_rng() and then use its .uniform() method to generate uniform random numbers.

    Example: Here, we generate a 2×3 matrix where each value comes from the Uniform Distribution between 1 and 5 using Generator.

    Python
    import numpy as np
    rng = np.random.default_rng()  # Create a Generator instance
    m = rng.uniform(1, 5, size=(2, 3))
    print(m)
    

    Output
    [[4.42554691 4.11402029 2.90202497]
     [4.74049492 3.26084455 2.00333856]]
    

    Explanation: The rng.uniform(1, 5, size=(2, 3)) call generates a 2×3 array where each value is drawn uniformly from 1 ≤ x < 5.

    Visualizing the Uniform Distribution

    Visualizing the generated numbers helps in understanding their behavior. Let's see a example to plot a histogram of random numbers using numpy.random.uniform function.

    Python
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    low = 10
    high = 20
    size = 1000
    
    data = np.random.uniform(low, high, size)
    
    sns.histplot(data, bins=30, kde=False, color='skyblue', edgecolor='black')
    
    plt.title(f"Uniform Distribution (Range: {low} to {high})")
    plt.xlabel("Value")
    plt.ylabel("Frequency")
    plt.grid(True)
    plt.show()
    

    Output

    UniformDistributionPlot
    Uniform Distribution Plot

    Explanation:

    • The histogram shows values scattered uniformly between low (10) and high (20).
    • Every number in this interval appears with similar frequency, which is the core property of a uniform distribution.
    • The flat pattern of bars confirms equal probability for all values in the range.
    Create Quiz

    J

    jitender_1998
    Improve

    J

    jitender_1998
    Improve
    Article Tags :
    • Python
    • Python-numpy
    • Python numpy-Random

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences