Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    Image Processing with SciPy and NumPy in Python

    Last Updated : 10 Jul, 2025
    Comments
    Improve
    Suggest changes
    Like Article
    Like
    Report

    Image processing is used in areas like computer vision and medical imaging, focusing on enhancing and analyzing digital images. In Python, NumPy treats images as arrays for efficient pixel-level operations, while SciPy’s ndimage module provides tools for filtering and transformations, enabling fast and lightweight processing.

    Installation

    Ensure you have the required libraries installed:

    pip install numpy scipy matplotlib imageio

    Output
    Setup Terminal Output

    Opening and Writing Images

    To begin any image processing task, the first step is to load and visualize the image. We'll use imageio.v3 to read an image and matplotlib to display it.

    Example:

    Python
    import imageio.v3 as iio
    import matplotlib.pyplot as plt
    
    img = iio.imread(r'C:\Users\visha\OneDrive\Desktop\Python\racoon.png')
    plt.imshow(img)
    plt.axis('off') 
    plt.title("Curious Raccoon")
    plt.show()
    

    Output

    scipysaveimage
    Loaded image

    Explanation: iio.imread() loads the image into a NumPy array. plt.imshow() visualizes it and plt.axis('off') hides axes for a cleaner look.

    Creating NumPy array from the image

    An image is essentially a multi-dimensional NumPy array. Knowing its shape and data type is important for applying filters and transformations.

    Python
    import imageio.v3 as iio
    import numpy as np
    
    img = iio.imread('raccoon.png')
    print("Shape:", img.shape)
    print("Data type:", img.dtype)
    

    Output

    Output
    Pixel data type

    Explanation: Shape helps understand the image layout (e.g., 266x341x3 for RGB). Data type (usually uint8) shows pixel value range (0–255).

    Creating RAW file

    A .raw file stores raw binary data from an image sensor or matrix. It's useful when dealing with uncompressed data in image pipelines.

    Example: Creating RAW file using SciPy

    Python
    import imageio.v3 as iio
    import numpy as np
    img = iio.imread('raccoon.png')
    img.tofile("raccoon.raw")
    

    Output

    File_Structure
    RAW saved

    Explanation: tofile() saves the image pixel data as a binary file, useful for low-level image processing.

    Opening RAW File

    To work with .raw files, we use np.fromfile() to reconstruct the image data into a usable NumPy array.

    Python
    import numpy as np
    
    img = np.fromfile('raccoon.raw', dtype=np.uint8)
    print(img.shape)
    

    Output

    Output
    Binary loaded

    Explanation: fromfile() reads binary data and the array must be reshaped manually if you want to visualize it (e.g., reshape to original height × width × channels).

    Getting Statistical Information

    Understanding the min, max and average pixel intensity gives insight into brightness, contrast and histogram distribution of the image.

    Python
    import numpy as np
    img = iio.imread('raccoon.png')
    
    print("Max:", img.max())
    print("Min:", img.min())
    print("Mean:", img.mean())
    

    Output

    Output
    Pixel stats

    Explanation: Max and min values indicate contrast and Mean gives an overall idea of brightness.

    Cropping the Image

    Cropping helps focus on a particular region of interest (ROI) in an image by slicing the NumPy array.

    Python
    import imageio.v3 as iio
    import matplotlib.pyplot as plt
    
    img = iio.imread('raccoon.png')
    x, y, _ = img.shape
    
    # Crop center region
    crop = img[x//3: -x//8, y//3: -y//8]
    
    plt.imshow(crop)
    plt.axis('off')
    plt.title("Cropped Raccoon")
    plt.show()
    

    Output

    Cropped_image

    Explanation: img.shape gives image dimensions (height x, width y, channels _). img[x//3: -x//8, y//3: -y//8] selects a central region using slicing and plt.imshow() visualizes the cropped section.

    Flipping Image (Vertical)

    Flipping an image (up-down or left-right) is a common data augmentation technique in image preprocessing.

    Python
    import imageio.v3 as iio
    import matplotlib.pyplot as plt
    import numpy as np
    
    img = iio.imread('raccoon.png')
    flipped = np.flipud(img)
    
    plt.imshow(flipped)
    plt.axis('off')
    plt.title("Flipped Image (Up-Down)")
    plt.show()
    

    Output

    Flipped_image

    Explanation: np.flipud() flips the image along the vertical axis.

    Filtering images

    Filtering is a fundamental technique in image processing used to enhance or suppress certain features. It helps in tasks like smoothing, sharpening and edge detection.

    1. Gaussian Blur

    Blurring helps reduce image noise and details using a Gaussian kernel. It’s useful in preprocessing steps like edge detection or thresholding.

    Python
    from scipy.ndimage import gaussian_filter
    import matplotlib.pyplot as plt
    
    img = iio.imread('raccoon.png')
    blurred = gaussian_filter(img, sigma=5)
    
    plt.imshow(blurred.astype(np.uint8))
    plt.axis('off')
    plt.title("Gaussian Blurred")
    plt.show()
    

    Output

    Output

    Explanation: gaussian_filter(img, sigma=5) smooths the image using a Gaussian kernel. sigma controls the intensity of blur and converts to uint8 before display to ensure proper color rendering.

    2. Sharpening Image (Unsharp Masking)

    Sharpening increases contrast between edges to enhance details and clarity. Unsharp masking subtracts a blurred version from the original.

    Python
    from skimage.color import rgb2gray, rgba2rgb
    from scipy.ndimage import gaussian_filter
    import imageio.v3 as iio
    import matplotlib.pyplot as plt
    
    img = iio.imread('raccoon.png')
    if img.shape[-1] == 4:
        img = rgba2rgb(img)
    
    gray = rgb2gray(img).astype(float)
    blur = gaussian_filter(gray, 5)
    alpha = 30
    sharp = gray + alpha * (gray - gaussian_filter(blur, 1))
    
    plt.imshow(sharp, cmap='gray')
    plt.axis('off')
    plt.title("Sharpened Image")
    plt.show()
    

    Output

    sharpen_image

    Explanation: Converts image to grayscale using rgb2gray. gray - gaussian_filter(blur, 1) extracts edge details and adds edge details back using alpha scaling Unsharp Masking.

    Denoising Images

    Image denoising removes random noise to enhance image quality, particularly useful in low-light photography or scanned documents.

    Setup & Imports

    Python
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.ndimage import gaussian_filter, median_filter, rotate, sobel
    from skimage.color import rgb2gray, rgba2rgb
    import imageio.v3 as iio
    

    1. Add noise

    Artificial noise is added to simulate a noisy environment, commonly seen in real-world low-light or sensor-imperfect images.

    Python
    img = iio.imread('raccoon.png')
    if img.shape[-1] == 4:
        img = rgba2rgb(img)
    gray = rgb2gray(img).astype(float)
    noise_img = gray + 0.9 * gray.std() * np.random.random(gray.shape)
    
    plt.imshow(noise_img, cmap='gray')
    plt.axis('off')
    plt.title("Noisy Image")
    plt.show()
    

    Output

    noisy_image

    Explanation: Adds random values scaled by image standard deviation to simulate real-world noise (e.g., from low-light sensors).

    2. Gaussian Denoising

    Gaussian filtering smooths the image by averaging pixel values with its neighbors using a Gaussian kernel, effectively reducing high-frequency noise.

    Python
    denoised = gaussian_filter(noise_img, sigma=2.2)
    
    plt.imshow(denoised, cmap='gray')
    plt.axis('off')
    plt.title("Denoised (Gaussian)")
    plt.show()
    


    denoising_image

    Explanation: Smooths the image using a Gaussian kernel to reduce high-frequency noise while preserving structure.

    Edge Detection using Sobel Filter

    Sobel edge detection identifies image edges by computing intensity gradients using 3×3 kernels. It highlights boundaries by combining horizontal and vertical changes, aiding in tasks like segmentation and object detection.

    Python
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.ndimage import rotate, gaussian_filter, sobel
    
    im = np.zeros((300, 300))
    im[64:-64, 64:-64] = 1
    
    im = rotate(im, 30, mode='constant')
    im = gaussian_filter(im, sigma=7)
    
    plt.imshow(im, cmap='gray')
    plt.axis('off')
    plt.title("Original Synthetic Image")
    plt.show()
    
    dx = sobel(im, axis=0, mode='constant')
    dy = sobel(im, axis=1, mode='constant')
    sobel_edges = np.hypot(dx, dy)
    
    plt.imshow(sobel_edges, cmap='gray')
    plt.axis('off')
    plt.title("Sobel Edge Detection")
    plt.show()
    

    Output

    Output
    Output

    Explanation: Creates a synthetic image, applies Gaussian blur, then detects edges using Sobel filters by computing horizontal and vertical gradients and combining them to highlight edge intensity.

    Create Quiz

    A

    abhishek1
    Improve

    A

    abhishek1
    Improve
    Article Tags :
    • Python
    • Image-Processing

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences