Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    How to create a vector in Python using NumPy

    Last Updated : 31 Jul, 2025
    Comments
    Improve
    Suggest changes
    20 Likes
    Like
    Report

    A vector is simply a one-dimensional (1-D) array which can represent anything from a list of numbers to a set of values like coordinates or measurements. In NumPy, vectors are treated as 1-D arrays and we can perform various mathematical operations on them such as addition, subtraction and dot products using simple and efficient code. In this article, we will see the process of creating vectors using NumPy and some basic vector operations such as arithmetic and dot products.

    Creating Vectors in NumPy

    There are various ways to create vectors in NumPy. The method we choose depends on the specific requirements of our task. Let’s see some common approaches.

    1. Using np.array()

    The simplest and most common method to create a vector is by converting a Python list into a NumPy array using the function.

    Syntax:

    np.array(list)

    Return: It returns 1-D array of vectors.

    In this example we will create a horizontal vector and a vertical vector.

    Python
    import numpy as np
    
    list1 = [1, 2, 3]
    list2 = [[10],
            [20],
            [30]]
    vector1 = np.array(list1)
    vector2 = np.array(list2)
    
    print("Horizontal Vector")
    print(vector1)
    
    print("----------------")
    
    print("Vertical Vector")
    print(vector2)
    

    Output: 

    vector1
    Using np.array()

    2. Using np.arange()

    It is used to create a sequence of values with regularly spaced values which can be used to create a vector.

    Syntax:

    np.arange(start, stop, step)

    Argument:

    • start: Starting value of the sequence (inclusive).
    • stop: End value of the sequence (exclusive).
    • step: The increment between values (optional, default is 1).

    Return: It returns a vector with values ranging from start to stop with an optional step.

    Python
    import numpy as np
    
    vector = np.arange(1, 6)
    
    print("Vector using np.arange():", vector)
    

    Output: 

    Vector using np.arange(): [1 2 3 4 5]

    3. Using np.linspace()

    It is used to create a vector with evenly spaced values between a given range.

    Syntax:

    np.linspace(start, stop, num=50)

    Argument:

    • start: Starting value.
    • stop: Ending value.
    • num: The number of points in the vector (default is 50).

    Return: It returns a vector with num evenly spaced values between start and stop.

    Python
    import numpy as np
    
    vector = np.linspace(0, 10, 5)
    
    print("Vector using np.linspace():", vector)
    

    Output: 

    Vector using np.linspace(): [ 0. 2.5 5. 7.5 10. ]

    4. Using np.zeros() and np.ones()

    np.zeros() and np.ones() are methods used to create vectors filled with zeros or ones respectively. These methods are used for initializing vectors when we need a specific starting value such as in mathematical or computational tasks that require known initial values.

    Syntax:

    np.zeros(shape)
    np.ones(shape)

    Arguments:

    • shape: The shape of the array. For a 1-D vector, pass an integer value representing the number of elements.

    Return:

    • np.zeros() returns a vector of zeros.
    • np.ones() returns a vector of ones.
    Python
    import numpy as np
    
    vector_zeros = np.zeros(5)
    print("Vector using np.zeros():", vector_zeros)
    
    vector_ones = np.ones(5)
    print("Vector using np.ones():", vector_ones)
    

    Output: 

    vector-one
    Using np.zeros() and np.ones()

    Performing Operations on Vectors

    Let's see some other operations on Vectors using Numpy.

    1. Basic Arithmetic operation

    In this example we will see basic arithmetic operations which are element-wise between two vectors of equal length to result in a new vector with the same length.

    Python
    import numpy as np
    
    list1 = [5, 6, 9]
    list2 = [1, 2, 3]
    
    vector1 = np.array(list1)
    
    print("First Vector          : " + str(vector1))
    
    vector2 = np.array(list2)
    
    print("Second Vector         : " + str(vector2))
    
    addition = vector1 + vector2
    print("Vector Addition       : " + str(addition))
    
    subtraction = vector1 - vector2
    print("Vector Subtraction   : " + str(subtraction))
    
    multiplication = vector1 * vector2
    print("Vector Multiplication : " + str(multiplication))
    
    division = vector1 / vector2
    print("Vector Division       : " + str(division))
    

    Output: 

    vector2
    Basic Arithmetic operation

    2. Vector Dot Product 

    The dot product also known as the scalar product is a fundamental operation in vector algebra. It involves multiplying corresponding elements of two vectors and summing the results. The dot product of two vectors results in a scalar value.

    Python
    import numpy as np
    
    list1 = [5, 6, 9]
    list2 = [1, 2, 3]
    
    vector1 = np.array(list1)
    print("First Vector  : " + str(vector1))
    
    vector2 = np.array(list2)
    print("Second Vector : " + str(vector2))
    
    dot_product = vector1.dot(vector2)
    print("Dot Product   : " + str(dot_product))
    

    Output:

    vector3
    Vector Dot Product 

    3. Vector-Scalar Multiplication 

    Multiplying a vector by a scalar is called scalar multiplication. To perform scalar multiplication, we need to multiply the scalar by each component of the vector.

    Python
    import numpy as np
    
    list1 = [1, 2, 3]
    
    vector = np.array(list1)
    print("Vector  : " + str(vector))
    
    scalar = 2
    print("Scalar  : " + str(scalar))
     
    scalar_mul = vector * scalar
    print("Scalar Multiplication : " + str(scalar_mul))
    

    Output:

    vector4
    Vector-Scalar Multiplication 
    Create Quiz

    R

    rakshitarora
    Improve

    R

    rakshitarora
    Improve
    Article Tags :
    • Python
    • Python-numpy

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.
See More

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences