Skip to content
    geeksforgeeks
    • Interview Prep
      • DSA
      • Interview Corner
      • Aptitude & Reasoning
      • Practice Coding Problems
      • All Courses
    • Tutorials
      • Python
      • Java
      • ML & Data Science
      • Programming Languages
      • Web Development
      • CS Subjects
      • DevOps
      • Software and Tools
      • School Learning
    • Tracks
      • Languages
        • Python
        • C
        • C++
        • Java
        • Advanced Java
        • SQL
        • JavaScript
        • C#
      • Interview Preparation
        • GfG 160
        • GfG 360
        • System Design
        • Core Subjects
        • Interview Questions
        • Interview Puzzles
        • Aptitude and Reasoning
        • Product Management
        • Computer Organisation and Architecture
      • Data Science
        • Python
        • Data Analytics
        • Complete Data Science
        • Gen AI
        • Agentic AI
      • Dev Skills
        • Full-Stack Web Dev
        • DevOps
        • Software Testing
        • CyberSecurity
        • NextJS
        • Git
      • Tools
        • Computer Fundamentals
        • AI Tools
        • MS Excel & Google Sheets
        • MS Word & Google Docs
      • Maths
        • Maths For Computer Science
        • Engineering Mathematics
        • School Maths
    • Python Tutorial
    • Data Types
    • Interview Questions
    • Examples
    • Quizzes
    • DSA Python
    • Data Science
    • NumPy
    • Pandas
    • Practice
    • Django
    • Flask
    • Projects
    Open In App

    How to Create a Sparse Matrix with SciPy

    Last Updated : 10 Dec, 2025
    Comments
    Improve
    Suggest changes
    3 Likes
    Like
    Report

    A sparse matrix is a matrix in which most elements are zeros. Sparse matrices are widely used in machine learning, natural language processing (NLP), and large-scale data processing, where storing all zero values is inefficient.

    Example of a sparse matrix:

    See More

    0 0 3 0 4
    0 0 5 7 0
    0 0 0 0 0
    0 2 6 0 0

    Storing such a matrix as a normal 2D array wastes memory, as most elements are zeros. Instead, we store only non-zero elements along with their row and column indices (triplets format).

    Benefits of using sparse matrices:

    • Reduced Memory Usage: Only non-zero elements are stored, saving memory.
    • Faster Computations: Operations can be performed only on non-zero elements, improving speed.

    Sparse Matrix Formats in SciPy

    The scipy.sparse module provides several formats for storing sparse matrices, each optimized for different operations:

    Format

    Best For

    Description

    csr_matrix

    Fast row slicing, math operations

    Compressed Sparse Row good for arithmetic and row access.

    csc_matrix

    Fast column slicing

    Compressed Sparse Column efficient for column-based ops.

    coo_matrix

    Easy matrix building

    Coordinate format using (row, col, value) triples.

    lil_matrix

    Incremental row-wise construction

    List of Lists, modify rows easily before converting.

    dia_matrix

    Diagonal-dominant matrices

    Stores only diagonals, saves space.

    dok_matrix

    Fast item assignment

    Dictionary-like, ideal for random updates.

    Example 1: csr_matrix (Compressed Sparse Row)

    CSR format stores non-zero values row-wise, enabling fast row slicing and efficient matrix operations.

    Python
    import numpy as np
    from scipy.sparse import csr_matrix
    
    d = np.array([3, 4, 5, 7, 2, 6])     # data
    r = np.array([0, 0, 1, 1, 3, 3])     # rows
    c = np.array([2, 4, 2, 3, 1, 2])     # cols
    
    csr = csr_matrix((d, (r, c)), shape=(4, 5))
    print(csr.toarray())                         
    

    Output

    [[0 0 3 0 4]
    [0 0 5 7 0]
    [0 0 0 0 0]
    [0 2 6 0 0]]

    Explanation: csr_matrix stores only non-zero values with their coordinates and reconstructs full matrix using toarray().

    Example 2: csc_matrix (Compressed Sparse Column)

    CSC format stores data column-wise, making column-based operations faster.

    Python
    import numpy as np
    from scipy.sparse import csc_matrix
    
    d = np.array([3, 4, 5, 7, 2, 6])     
    r = np.array([0, 0, 1, 1, 3, 3])     
    c = np.array([2, 4, 2, 3, 1, 2])     
    
    csc = csc_matrix((d, (r, c)), shape=(4, 5)) 
    print(csc.toarray())                                 
    

    Output

    [[0 0 3 0 4]
    [0 0 5 7 0]
    [0 0 0 0 0]
    [0 2 6 0 0]]

    Explanation: Stores non-zero values in column-compressed format, efficient for column operations.

    Example 3: coo_matrix (Coordinate Format)

    COO format represents the matrix using (row, col, value) triplets. Useful when constructing matrices dynamically before converting to CSR/CSC.

    Python
    import numpy as np
    from scipy.sparse import coo_matrix
    
    d = np.array([3, 4, 5, 7, 2, 6]) 
    r = np.array([0, 0, 1, 1, 3, 3]) 
    c = np.array([2, 4, 2, 3, 1, 2]) 
    
    coo = coo_matrix((d, (r, c)), shape=(4, 5))
    print(coo.toarray())
    

    Output

    [[0 0 3 0 4]
    [0 0 5 7 0]
    [0 0 0 0 0]
    [0 2 6 0 0]]

    Explanation: Stores elements as (row, col, value) tuples.

    Example 4: lil_matrix (List of Lists)

    LIL (List of Lists) format allows efficient row-wise construction. You can easily insert or modify values before converting the matrix to CSR or CSC for faster computation.

    Python
    import numpy as np
    from scipy.sparse import lil_matrix
    
    lil = lil_matrix((4, 5))
    lil[0, 2] = 3
    lil[0, 4] = 4
    lil[1, 2] = 5
    lil[1, 3] = 7
    lil[3, 1] = 2
    lil[3, 2] = 6
    
    print(lil.toarray())
    

    Output

    [[0. 0. 3. 0. 4.]
    [0. 0. 5. 7. 0.]
    [0. 0. 0. 0. 0.]
    [0. 2. 6. 0. 0.]]

    Explanation: Creates a List of Lists (LIL) matrix and assigns values directly by row and column.

    Example 5: dok_matrix (Dictionary of Keys)

    DOK (Dictionary of Keys) format is ideal for random assignments. You can assign elements at any position efficiently, making it perfect for incremental matrix construction.

    Python
    import numpy as np
    from scipy.sparse import dok_matrix
    
    dok = dok_matrix((4, 5))
    dok[0, 2] = 3
    dok[0, 4] = 4
    dok[1, 2] = 5
    dok[1, 3] = 7
    dok[3, 1] = 2
    dok[3, 2] = 6
    
    print(dok.toarray())
    

    Output

    [[0. 0. 3. 0. 4.]
    [0. 0. 5. 7. 0.]
    [0. 0. 0. 0. 0.]
    [0. 2. 6. 0. 0.]]

    Explanation: Internally stored as dictionary {(row, col): value}.

    Example 6: dia_matrix (Diagonal Matrix)

    DIA (Diagonal) format stores only the diagonals of the matrix. It is very memory-efficient for diagonal-dominant matrices, where most non-zero elements lie along certain diagonals.

    Python
    import numpy as np
    from scipy.sparse import dia_matrix
    
    data = np.array([[3, 5, 6, 7]])  
    offsets = np.array([0])         
    
    dia = dia_matrix((data, offsets), shape=(4, 5))
    print(dia.toarray())
    

    Output

    [[3 0 0 0 0]
    [0 5 0 0 0]
    [0 0 6 0 0]
    [0 0 0 7 0]]

    Explanation: Creates a Diagonal (DIA) matrix storing only specified diagonals.

    Related Articles:

    • Compressed Sparse formats CSR and CSC in Python
    • Python program to Convert a Matrix to Sparse Matrix
    Create Quiz

    A

    AmiyaRanjanRout
    Improve

    A

    AmiyaRanjanRout
    Improve
    Article Tags :
    • Python
    • Python Programs
    • Python-scipy

    Explore

      Python Fundamentals

      Python Introduction

      2 min read

      Input and Output in Python

      4 min read

      Python Variables

      4 min read

      Python Operators

      4 min read

      Python Keywords

      2 min read

      Python Data Types

      8 min read

      Conditional Statements in Python

      3 min read

      Loops in Python - For, While and Nested Loops

      5 min read

      Python Functions

      5 min read

      Recursion in Python

      4 min read

      Python Lambda Functions

      5 min read

      Python Data Structures

      Python String

      5 min read

      Python Lists

      4 min read

      Python Tuples

      4 min read

      Python Dictionary

      3 min read

      Python Sets

      6 min read

      Python Arrays

      7 min read

      List Comprehension in Python

      4 min read

      Advanced Python

      Python OOP Concepts

      11 min read

      Python Exception Handling

      5 min read

      File Handling in Python

      4 min read

      Python Database Tutorial

      4 min read

      Python MongoDB Tutorial

      3 min read

      Python MySQL

      9 min read

      Python Packages

      10 min read

      Python Modules

      3 min read

      Python DSA Libraries

      15 min read

      List of Python GUI Library and Packages

      3 min read

      Data Science with Python

      NumPy Tutorial - Python Library

      3 min read

      Pandas Tutorial

      4 min read

      Matplotlib Tutorial

      5 min read

      Python Seaborn Tutorial

      3 min read

      StatsModel Library - Tutorial

      3 min read

      Learning Model Building in Scikit-learn

      6 min read

      TensorFlow Tutorial

      2 min read

      PyTorch Tutorial

      6 min read

      Web Development with Python

      Flask Tutorial

      8 min read

      Django Tutorial | Learn Django Framework

      7 min read

      Django ORM - Inserting, Updating & Deleting Data

      4 min read

      Templating With Jinja2 in Flask

      6 min read

      Django Templates

      5 min read

      Build a REST API using Flask - Python

      3 min read

      Building a Simple API with Django REST Framework

      3 min read

      Python Practice

      Python Quiz

      1 min read

      Python Coding Practice

      1 min read

      Python Interview Questions and Answers

      15+ min read
    top_of_element && top_of_screen < bottom_of_element) || (bottom_of_screen > articleRecommendedTop && top_of_screen < articleRecommendedBottom) || (top_of_screen > articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • Software and Tools
  • Courses
  • ML and Data Science
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Interview Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences