Skip to main content
Log in

Development of Cas13a-based therapy for cancer treatment

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Gene therapy has become a major focus of current biomedical research. CRISPR (Clustered Regularly Inter spaced Short Palindromic Repeats) systems have been extensively researched for disease treatment applications through genome editing specificity. Compared with Cas9 (CRISPR-associated proteins, Cas), a commonly used tool enzyme for genome editing, Cas13a exhibits RNA-dependent endonuclease activity, including collateral cleavage without obvious potential genetic risks. With its high specificity, Cas13a has significantly improved the sensitivity of viral diagnosis and shown potential to eliminate viruses. However, its efficacy in tumor therapy has not been determined. This review introduces the mechanism and research developments associated with the CRISPR-Cas13a system in tumor treatments and its potential to be used as a new tool for gene therapy. We hope more research would apply Cas13a-based therapy in cancer treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Weatherall DJ (1989) Gene Therapy. BMJ 298:691–693, https://doi.org/10.1136/bmj.298.6675.691

  2. Mullard A (2019) Gene Therapy Boom continues. Nat Rev Drug Discov 18. https://doi.org/10.1038/d41573-019-00154-0

  3. Xin H (2006) Chinese Gene Therapy. Gendicine’s efficacy: hard to Translate. Science 314:1233. https://doi.org/10.1126/science.314.5803.1233

    Article  PubMed  Google Scholar 

  4. Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F (2020) Externally-controlled systems for immunotherapy: from bench to bedside. Front Immunol 11:2044. https://doi.org/10.3389/fimmu.2020.02044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, Ran W, Yang K, Huang G, Li L (2021) Expert consensus on the clinical application of recombinant adenovirus human P53 for head and neck cancers. Int J Oral Sci 13. https://doi.org/10.1038/s41368-021-00145-1

  6. Donahue PS, Draut JW, Muldoon JJ, Edelstein HI, Bagheri N, Leonard JN (2020) The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat Commun 11:779. https://doi.org/10.1038/s41467-019-14147-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1. https://doi.org/10.1038/s41392-019-0089-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507. https://doi.org/10.1038/s41580-019-0131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee Y-L et al (2008) Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816. https://doi.org/10.1038/nbt1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stan R, Zaia JA (2014) Practical considerations in gene therapy for HIV cure. Curr HIV/AIDS Rep 11:11–19. https://doi.org/10.1007/s11904-013-0197-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392. https://doi.org/10.1038/nbt.2199

    Article  CAS  PubMed  Google Scholar 

  12. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U.S.A. 109:17382–17387, https://doi.org/10.1073/pnas.1211446109

  13. Wang Y, Huang C, Zhao W (2022) Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 49:7087–7100. https://doi.org/10.1007/s11033-022-07519-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS et al (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630e7. https://doi.org/10.1016/j.molcel.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li S, Li X, Xue W, Zhang L, Yang L-Z, Cao S-M, Lei Y-N, Liu C-X, Guo S-K, Shan L et al (2021) Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods 18:51–59. https://doi.org/10.1038/s41592-020-01011-4

    Article  CAS  PubMed  Google Scholar 

  16. Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y et al (2022) Author correction: programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 19:255. https://doi.org/10.1038/s41592-021-01379-x

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y (2017) The molecular architecture for RNA-Guided RNA cleavage by Cas13a. Cell 170:714–726e10. https://doi.org/10.1016/j.cell.2017.06.050

    Article  CAS  PubMed  Google Scholar 

  18. Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O’Connell MR, Doudna JA (2017) Guide-bound structures of an RNA-targeting A-Cleaving CRISPR–Cas13a enzyme. Nat Struct Mol Biol 24:825–833. https://doi.org/10.1038/nsmb.3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A et al (2017) RNA targeting with CRISPR–Cas13. Nature 550:280–284. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu Q-W, Kapfhammer JP (2020) The CRISPR-Cas13a System interferes with Purkinje cell dendritic development. Biochim et Biophys Acta (BBA) - Mol Cell Res 1867:118710. https://doi.org/10.1016/j.bbamcr.2020.118710

    Article  CAS  Google Scholar 

  21. East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA (2017) RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell 66:373–383e3. https://doi.org/10.1016/j.molcel.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He Y, Wu Y, Wang Y, Wang X, Xing S, Li H, Guo S, Yu X, Dai S, Zhang G et al (2020) Applying CRISPR/Cas13 to construct exosomal PD-L1 ultrasensitive biosensors for dynamic monitoring of tumor progression in immunotherapy. Adv Th 3:2000093. https://doi.org/10.1002/adtp.202000093

    Article  CAS  Google Scholar 

  23. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442. https://doi.org/10.1126/science.aam9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan WA, Barney RE, Tsongalis GJ (2021) CRISPR-Cas13 Enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting. J Clin Virol 145:105019. https://doi.org/10.1016/j.jcv.2021.105019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D et al (2022) SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 76:103861. https://doi.org/10.1016/j.ebiom.2022.103861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. López-Valls M, Escalona-Noguero C, Rodríguez-Díaz C, Pardo D, Castellanos M, Milán-Rois P, Martínez-Garay C, Coloma R, Abreu M, Cantón R et al (2022) CASCADE: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta 1205. https://doi.org/10.1016/j.aca.2022.339749

  27. Wang Y, Zhang Y, Chen J, Wang M, Zhang T, Luo W, Li Y, Wu Y, Zeng B, Zhang K et al (2021) Detection of SARS-CoV-2 and its mutated variants via CRISPR-Cas13-based transcription amplification. Anal Chem 93:3393–3402. https://doi.org/10.1021/acs.analchem.0c04303

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, Shi J, Wang Y, Nie G (2018) A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett 431:171–181. https://doi.org/10.1016/j.canlet.2018.05.042

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Quan R, Wang H, Ruan X, Mo J, Zhong C, Yang H, Li Z, Gu T, Liu D et al (2019) Inhibition of KU70 and KU80 by CRISPR Interference, not NgAgo interference, increases the efficiency of homologous recombination in pig fetal fibroblasts. J Integr Agric 18:438–448. https://doi.org/10.1016/S2095-3119(18)62150-1

    Article  CAS  Google Scholar 

  30. Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F (2018) Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discov 4:46. https://doi.org/10.1038/s41421-018-0049-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16:12–17. https://doi.org/10.1038/nrmicro.2017.120

    Article  CAS  PubMed  Google Scholar 

  32. Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, Kim D, Koo T, Ko J-H, Kim Y-S (2022) Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 40:94–102. https://doi.org/10.1038/s41587-021-01009-z

    Article  CAS  PubMed  Google Scholar 

  33. Ling X, Chang L, Chen H, Gao X, Yin J, Zuo Y, Huang Y, Zhang B, Hu J, Liu T (2021) Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Mol Cell 81:4747–4756e7. https://doi.org/10.1016/j.molcel.2021.09.021

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Wang Q, Liu Q, Zheng Y, Zheng C, Yi K, Zhao Y, Gu Y, Wang Y, Wang C et al (2019) Dual-locking nanoparticles disrupt the PD‐1/PD‐L1 pathway for efficient cancer immunotherapy. Adv Mater 31:1905751. https://doi.org/10.1002/adma.201905751

    Article  CAS  Google Scholar 

  35. Fan J, Liu Y, Liu L, Huang Y, Li X, Huang WA (2020) Multifunction lipid-based CRISPR-Cas13a genetic circuit delivery system for bladder cancer gene therapy. ACS Synth Biol 9:343–355. https://doi.org/10.1021/acssynbio.9b00349

    Article  CAS  PubMed  Google Scholar 

  36. Saifullah S, Sakari M, Suzuki T, Yano S, Tsukahara T (2020) Effective RNA knockdown using CRISPR-Cas13a and molecular targeting of the EML4-ALK transcript in H3122 lung cancer cells. IJMS 21:8904. https://doi.org/10.3390/ijms21238904

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q-W, Kapfhammer JP (2021) The bacterial enzyme Cas13 interferes with neurite outgrowth from cultured cortical neurons. Toxins 13:262. https://doi.org/10.3390/toxins13040262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kulkarni A, Yu W, Moon A, Pandey A, Hanley KA, Xu J (2020) Programmable CRISPR interference for gene silencing using Cas13a in mosquitoes. J Genomics 8:30–36. https://doi.org/10.7150/jgen.43928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huynh N, Depner N, Larson R, King-Jones K (2020) A versatile toolkit for CRISPR-Cas13-Based RNA manipulation in drosophila. Genome Biol 21:279. https://doi.org/10.1186/s13059-020-02193-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K, Kang C (2019) The CRISPR-Cas13a gene‐editing system induces collateral cleavage of RNA in glioma cells. Adv Sci 6:1901299. https://doi.org/10.1002/advs.201901299

    Article  CAS  Google Scholar 

  41. Gao J, Luo T, Lin N, Zhang S, Wang JA (2020) New tool for CRISPR-Cas13a-based cancer gene therapy. Mol Therapy - Oncolytics 19:79–92. https://doi.org/10.1016/j.omto.2020.09.004

    Article  CAS  Google Scholar 

  42. Ishola AA, Chien C-S, Yang Y-P, Chien Y, Yarmishyn AA, Tsai P-H, Chen JC-Y, Hsu P-K, Luo Y-H, Chen Y-M et al (2022) Oncogenic circRNA C190 promotes non–small cell lung cancer via modulation of the EGFR/ERK Pathway. Cancer Res 82:75–89. https://doi.org/10.1158/0008-5472.CAN-21-1473

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Jiang H, Wang T, He D, Tian R, Cui Z, Tian X, Gao Q, Ma X, Yang J et al (2020) In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system. Antiviral Res 178:104794. https://doi.org/10.1016/j.antiviral.2020.104794

    Article  CAS  PubMed  Google Scholar 

  44. Qi F, Tan B, Ma F, Zhu B, Zhang L, Liu X, Li H, Yang J, Cheng BA (2019) Synthetic light-switchable system based on CRISPR Cas13a regulates the expression of LncRNA MALAT1 and affects the malignant phenotype of bladder cancer cells. Int J Biol Sci 15:1630–1636. https://doi.org/10.7150/ijbs.33772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yue H, Huang R, Shan Y, Xing D (2020) Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. J Mater Chem B 8:11096–11106. https://doi.org/10.1039/d0tb01914c

    Article  CAS  PubMed  Google Scholar 

  46. Zhang N, Bewick B, Xia G, Furling D, Ashizawa T (2020) A CRISPR-Cas13a based strategy that tracks and degrades toxic RNA in myotonic dystrophy type 1. Front Genet 11:594576. https://doi.org/10.3389/fgene.2020.594576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Che W, Ye S, Cai A, Cui X, Sun Y (2020) CRISPR-Cas13a targeting the enhancer RNA-SMAD7e inhibits bladder cancer development both in vitro and in vivo. Front Mol Biosci 7:607740. https://doi.org/10.3389/fmolb.2020.607740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding M, Zhan H, Liao X, Li A, Zhong Y, Gao Q, Liu Y, Huang W, Cai Z (2018) Enhancer RNA - P2RY2e induced by estrogen promotes malignant behaviors of bladder cancer. Int J Biol Sci 14:1268–1276. https://doi.org/10.7150/ijbs.27151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding M, Liu Y, Li J, Yao L, Liao X, Xie H, Yang K, Zhou Q, Liu Y, Huang W et al (2018) Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1. J Cell Mol Med 22:5919–5927. https://doi.org/10.1111/jcmm.13861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Chen J, Zhu Z, Zhu Z, Liao X, Wu J, Cheng J, Zhang X, Mei H, Yang G (2021) CRISPR-Cas13-mediated knockdown of lncRNA-GACAT3 inhibited cell proliferation and motility, and induced apoptosis by increasing P21, Bax, and E-Cadherin expression in bladder cancer. Front Mol Biosci 7:627774. https://doi.org/10.3389/fmolb.2020.627774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu S, Wang Y, Li H, Chen L, Liu Q (2020) Regulatory networks of LncRNA MALAT-1 in cancer. CMAR Volume 12, 10181–10198, https://doi.org/10.2147/CMAR.S276022

  52. Zhuang C, Zhuang C, Zhou Q, Huang X, Gui Y, Lai Y, Yang S (2021) Engineered CRISPR/Cas13d sensing hTERT selectively inhibits the progression of bladder cancer in vitro. Front Mol Biosci 8:646412. https://doi.org/10.3389/fmolb.2021.646412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li C, Guo L, Liu G, Guo M, Wei H, Yang Q, Wang J, Chen H (2020) Reprogrammed CRISPR–Cas13a targeting the HPV16/18 E6 gene inhibits proliferation and induces apoptosis in E6–transformed keratinocytes. Exp Ther Med. https://doi.org/10.3892/etm.2020.8631

    Article  PubMed  PubMed Central  Google Scholar 

  54. Harrison PT, Vyse S, Huang PH (2020) Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol 61:167–179. https://doi.org/10.1016/j.semcancer.2019.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu C, Leche CA 2nd;, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, Lemmon MA (2022) Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 602:518–522. https://doi.org/10.1038/s41586-021-04393-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tambe A, East-Seletsky A, Knott GJ, Doudna JA, O’Connell MR (2018) RNA binding and HEPN-Nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep 24:1025–1036. https://doi.org/10.1016/j.celrep.2018.06.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang S, Wu F, Peng S, Wang F, Chen Y, Yuan Y, Weng X, Zhou X (2020) A m 6 A sensing method by its impact on the stability of RNA double helix. C&B 17, https://doi.org/10.1002/cbdv.202000050

  58. Kannan S, Altae-Tran H, Jin X, Madigan VJ, Oshiro R, Makarova KS, Koonin EV, Zhang F (2022) Compact RNA editors with small Cas13 proteins. Nat Biotechnol 40:194–197. https://doi.org/10.1038/s41587-021-01030-2

    Article  CAS  PubMed  Google Scholar 

  59. Zhang C, Konermann S, Brideau NJ, Lotfy P, Wu X, Novick SJ, Strutzenberg T, Griffin PR, Hsu PD, Lyumkis D (2018) Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 175:212–223e17. https://doi.org/10.1016/j.cell.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao J, Luo T, Wang J (2021) Gene interfered-ferroptosis therapy for cancers. Nat Commun 12:5311. https://doi.org/10.1038/s41467-021-25632-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was financially supported by grants from National Natural Science Foundation of China (Grant No. 21575058), Natural Science Foundation of Guangdong Province (Grant No. 2023A1515011925). We thank J. Iacona, Ph.D., from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conception: TL and WM. Interpretation or analysis of data: SW and YW. Preparation of the manuscript: YW and YD. Revision for important intellectual: AM and BZ, Content: YW and YD. Supervision: TL. DY, BZ and YW contributed equally to this work.

Corresponding authors

Correspondence to Weifeng Ma or Tiancai Liu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, B., Wei, Y. et al. Development of Cas13a-based therapy for cancer treatment. Mol Biol Rep 51, 94 (2024). https://doi.org/10.1007/s11033-023-09129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11033-023-09129-2

Keywords

Profiles

  1. Tiancai Liu