Skip to main content
Log in

Development, regulation and functional capacities of Th17 cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

T helper (Th) 17 cells have been classified as a new lineage, distinct from Th1, Th2 and Treg. Their development requires a unique combination of cytokines and depends on distinct intracellular events, resulting in the production of the signature cytokines interleukin (IL)-17A, IL-17F and IL-22. The differential cytokine expression patterns in Th cells suggest a division of labour in the response against a variety of pathogens. Th17 have an important function in the host-defense-response against extracellular pathogens, but they also have become notorious for their role in the pathogenesis of many autoimmune and allergic disorders. Animal models of autoimmune disorders have shown that Th17 effector molecules and transcription factors play a crucial role in both development and maintenance of the disease. The discovery of Th17 not only enhanced our insight into these disorders but also placed a Th subset at the interface between the innate and adoptive immune systems with the potential to regulate subsequent immunity against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Parish CR (1971) Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med 134:21–47

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  3. Perrigoue JG, Saenz SA, Siracusa MC et al (2009) MHC class II-dependent basophil-CD4(+) T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705

    Article  CAS  PubMed  Google Scholar 

  4. Sokol CL, Chu NQ, Yu S et al (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720

    Article  CAS  PubMed  Google Scholar 

  5. Yoshimoto T, Yasuda K, Tanaka H et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706–712

    Article  CAS  PubMed  Google Scholar 

  6. Charles N, Watford WT, Ramos HL et al (2009) Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity 30:533–543

    Article  CAS  PubMed  Google Scholar 

  7. Itoh M, Takahashi T, Sakaguchi N et al (1999) Thymus and autoimmunity: production of CD25 + CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326

    CAS  PubMed  Google Scholar 

  8. Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  CAS  PubMed  Google Scholar 

  9. Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  Google Scholar 

  10. Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355

    Article  CAS  PubMed  Google Scholar 

  11. Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  CAS  PubMed  Google Scholar 

  12. Faulkner H, Humphreys N, Renauld JC et al (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27:2536–2540

    Article  CAS  PubMed  Google Scholar 

  13. Temann UA, Geba GP, Rankin JA et al (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307–1320

    Article  CAS  PubMed  Google Scholar 

  14. Breitfeld D, Ohl L, Kremmer E et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552

    Article  CAS  PubMed  Google Scholar 

  15. Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10:385–393

    Article  CAS  PubMed  Google Scholar 

  16. Vogelzang A, McGuire HM, Yu D et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137

    Article  CAS  PubMed  Google Scholar 

  17. Bauquet AT, Jin H, Paterson AM et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175

    Article  CAS  PubMed  Google Scholar 

  18. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  CAS  PubMed  Google Scholar 

  19. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  20. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  21. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  22. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed  Google Scholar 

  23. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  24. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  CAS  PubMed  Google Scholar 

  25. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  26. Mangan PR, Harrington LE, O'Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  27. Asseman C, Mauze S, Leach MW et al (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004

    Article  CAS  PubMed  Google Scholar 

  28. Powrie F, Carlino J, Leach MW et al (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674

    Article  CAS  PubMed  Google Scholar 

  29. Chen CH, Seguin-Devaux C, Burke NA et al (2003) Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 197:1689–1699

    Article  CAS  PubMed  Google Scholar 

  30. Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505

    Article  CAS  PubMed  Google Scholar 

  31. Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181

    Article  CAS  PubMed  Google Scholar 

  32. Heath VL, Murphy EE, Crain C et al (2000) TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30:2639–2649

    Article  CAS  PubMed  Google Scholar 

  33. Lin JT, Martin SL, Xia L et al (2005) TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 174:5950–5958

    CAS  PubMed  Google Scholar 

  34. Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591

    Article  CAS  PubMed  Google Scholar 

  35. Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774

    Article  CAS  PubMed  Google Scholar 

  36. Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  CAS  PubMed  Google Scholar 

  37. Allen JB, Manthey CL, Hand AR et al (1990) Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med 171:231–247

    Article  CAS  PubMed  Google Scholar 

  38. Wahl SM, Allen JB, Costa GL et al (1993) Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 177:225–230

    Article  CAS  PubMed  Google Scholar 

  39. McKarns SC, Kaminski NE (2000) TGF-beta 1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3 epsilon mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology 48:101–115

    Article  CAS  PubMed  Google Scholar 

  40. Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156

    Article  CAS  PubMed  Google Scholar 

  41. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  CAS  PubMed  Google Scholar 

  42. Alonzi T, Fattori E, Lazzaro D et al (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468

    Article  CAS  PubMed  Google Scholar 

  43. Eugster HP, Frei K, Kopf M et al (1998) IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28:2178–2187

    Article  CAS  PubMed  Google Scholar 

  44. Ohshima S, Saeki Y, Mima T et al (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A 95:8222–8226

    Article  CAS  PubMed  Google Scholar 

  45. Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708

    Article  CAS  PubMed  Google Scholar 

  46. Hata H, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588

    CAS  PubMed  Google Scholar 

  47. Chabaud M, Fossiez F, Taupin JL et al (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414

    CAS  PubMed  Google Scholar 

  48. Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  CAS  PubMed  Google Scholar 

  49. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  CAS  PubMed  Google Scholar 

  50. Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  CAS  PubMed  Google Scholar 

  51. Chtanova T, Tangye SG, Newton R et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78

    CAS  PubMed  Google Scholar 

  52. Nurieva RI, Chung Y, Hwang D et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149

    Article  CAS  PubMed  Google Scholar 

  53. Suto A, Kashiwakuma D, Kagami S et al (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379

    Article  CAS  PubMed  Google Scholar 

  54. Coquet JM, Chakravarti S, Smyth MJ et al (2008) Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol 180:7097–7101

    CAS  PubMed  Google Scholar 

  55. Liu R, Bai Y, Vollmer TL et al (2008) IL-21 receptor expression determines the temporal phases of experimental autoimmune encephalomyelitis. Exp Neurol 211:14–24

    Article  CAS  PubMed  Google Scholar 

  56. Piao WH, Jee YH, Liu RL et al (2008) IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis. Scand J Immunol 67:37–46

    Article  CAS  PubMed  Google Scholar 

  57. Sonderegger I, Kisielow J, Meier R et al (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 38:1833–1838

    Article  CAS  PubMed  Google Scholar 

  58. Saraiva M, Christensen JR, Veldhoen M et al (2009) Interleukin-10 Production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219

    Article  CAS  PubMed  Google Scholar 

  59. Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  CAS  PubMed  Google Scholar 

  60. Awasthi A, Riol-Blanco L, Jager A et al (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908

    Article  CAS  PubMed  Google Scholar 

  61. Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326

    Article  CAS  PubMed  Google Scholar 

  62. Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318

    Article  CAS  PubMed  Google Scholar 

  63. McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    Article  CAS  PubMed  Google Scholar 

  64. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178

    Article  CAS  PubMed  Google Scholar 

  65. Tanabe O, Akira S, Kamiya T et al (1988) Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol 141:3875–3881

    CAS  PubMed  Google Scholar 

  66. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949

    Article  CAS  PubMed  Google Scholar 

  67. Chen Z, Tato CM, Muul L et al (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56:2936–2946

    Article  CAS  PubMed  Google Scholar 

  68. Evans HG, Suddason T, Jackson I et al (2007) Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci U S A 104:17034–17039

    Article  CAS  PubMed  Google Scholar 

  69. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669

    Article  PubMed  CAS  Google Scholar 

  70. Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  CAS  PubMed  Google Scholar 

  71. Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649

    Article  CAS  PubMed  Google Scholar 

  72. Volpe E, Servant N, Zollinger R et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657

    Article  CAS  PubMed  Google Scholar 

  73. Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352

    Article  CAS  PubMed  Google Scholar 

  74. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  75. Yang XO, Pappu BP, Nurieva R et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39

    Article  CAS  PubMed  Google Scholar 

  76. Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  CAS  PubMed  Google Scholar 

  77. Kimura A, Naka T, Nohara K et al (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 105:9721–9726

    Article  CAS  PubMed  Google Scholar 

  78. Veldhoen M, Hirota K, Christensen J et al (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49

    Article  CAS  PubMed  Google Scholar 

  79. Wincent E, Amini N, Luecke S et al (2009) The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3, 2-b]carbazole is present in humans. J Biol Chem 284:2690–2696

    Article  CAS  PubMed  Google Scholar 

  80. Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  CAS  PubMed  Google Scholar 

  81. Poland A, Palen D, Glover E (1994) Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46:915–921

    CAS  PubMed  Google Scholar 

  82. Schraml BU, Hildner K, Ise W et al (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409

    CAS  PubMed  Google Scholar 

  83. Adamson AS, Collins K, Laurence A et al (2009) The current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol 21:161–166

    Article  CAS  PubMed  Google Scholar 

  84. Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  CAS  PubMed  Google Scholar 

  85. Yang XO, Nurieva R, Martinez GJ et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  CAS  PubMed  Google Scholar 

  86. Qin H, Wang L, Feng T et al (2009) TGF-{beta} promotes Th17 cell development through inhibition of SOCS3. J Immunol 183:97–105

    Article  CAS  PubMed  Google Scholar 

  87. Brustle A, Heink S, Huber M et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966

    Article  PubMed  CAS  Google Scholar 

  88. Chen Q, Yang W, Gupta S et al (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911

    Article  CAS  PubMed  Google Scholar 

  89. de Beaucoudrey L, Puel A, Filipe-Santos O et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205:1543–1550

    Article  PubMed  CAS  Google Scholar 

  90. Minegishi Y, Saito M, Tsuchiya S et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062

    Article  CAS  PubMed  Google Scholar 

  91. Ma CS, Chew GY, Simpson N et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557

    Article  CAS  PubMed  Google Scholar 

  92. Milner JD, Brenchley JM, Laurence A et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776

    Article  CAS  PubMed  Google Scholar 

  93. Ichiyama K, Yoshida H, Wakabayashi Y et al (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283:17003–17008

    Article  CAS  PubMed  Google Scholar 

  94. Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  CAS  PubMed  Google Scholar 

  95. Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med 205:1381–1393

    Article  CAS  PubMed  Google Scholar 

  96. Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689

    Article  CAS  PubMed  Google Scholar 

  97. Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306

    Article  CAS  PubMed  Google Scholar 

  98. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  99. Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844

    Article  CAS  PubMed  Google Scholar 

  100. Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094

    Article  CAS  PubMed  Google Scholar 

  101. Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260

    Article  CAS  PubMed  Google Scholar 

  102. Torchinsky MB, Garaude J, Martin AP et al (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82

    Article  CAS  PubMed  Google Scholar 

  103. Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776

    Article  CAS  PubMed  Google Scholar 

  104. Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649

    Article  CAS  PubMed  Google Scholar 

  105. Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    Article  CAS  PubMed  Google Scholar 

  106. Voo KS, Wang YH, Santori FR et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798

    Article  CAS  PubMed  Google Scholar 

  107. Du J, Huang C, Zhou B et al (2008) Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180:4785–4792

    CAS  PubMed  Google Scholar 

  108. Guo S, Cobb D, Smeltz RB (2009) T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J Immunol 182:6179–6186

    Article  CAS  PubMed  Google Scholar 

  109. Batten M, Li J, Yi S et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936

    Article  CAS  PubMed  Google Scholar 

  110. Stumhofer JS, Laurence A, Wilson EH et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945

    Article  CAS  PubMed  Google Scholar 

  111. Shinohara ML, Kim JH, Garcia VA et al (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78

    Article  CAS  PubMed  Google Scholar 

  112. Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690

    Article  CAS  PubMed  Google Scholar 

  113. Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799

    CAS  PubMed  Google Scholar 

  114. Claudio E, Sonder SU, Saret S et al (2009) The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol 182:1617–1630

    Article  CAS  PubMed  Google Scholar 

  115. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567

    Article  CAS  PubMed  Google Scholar 

  116. Ishigame H, Kakuta S, Nagai T et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119

    Article  CAS  PubMed  Google Scholar 

  117. Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821

    Article  CAS  PubMed  Google Scholar 

  118. Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39

    CAS  PubMed  Google Scholar 

  119. Haudenschild D, Moseley T, Rose L et al (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316

    Article  CAS  PubMed  Google Scholar 

  120. Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473

    CAS  PubMed  Google Scholar 

  121. Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819

    CAS  PubMed  Google Scholar 

  122. Dumoutier L, Van Roost E, Colau D et al (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97:10144–10149

    Article  CAS  PubMed  Google Scholar 

  123. Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103

    CAS  PubMed  Google Scholar 

  124. Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276:2725–2732

    Article  CAS  PubMed  Google Scholar 

  125. Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  CAS  PubMed  Google Scholar 

  126. Aujla SJ, Chan YR, Zheng M et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281

    Article  CAS  PubMed  Google Scholar 

  127. Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  128. Pan H, Hong F, Radaeva S et al (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1:43–49

    CAS  PubMed  Google Scholar 

  129. Radaeva S, Sun R, Pan HN et al (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39:1332–1342

    Article  CAS  PubMed  Google Scholar 

  130. Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27:647–659

    Article  CAS  PubMed  Google Scholar 

  131. Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472

    Article  CAS  PubMed  Google Scholar 

  132. Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651

    Article  CAS  PubMed  Google Scholar 

  133. Kleinewietfeld M, Puentes F, Borsellino G et al (2005) CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 105:2877–2886

    Article  CAS  PubMed  Google Scholar 

  134. Charbonnier AS, Kohrgruber N, Kriehuber E et al (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190:1755–1768

    Article  CAS  PubMed  Google Scholar 

  135. Dieu-Nosjean MC, Massacrier C, Homey B et al (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–718

    Article  CAS  PubMed  Google Scholar 

  136. Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394

    Article  CAS  PubMed  Google Scholar 

  137. Le Borgne M, Etchart N, Goubier A et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24:191–201

    Article  PubMed  CAS  Google Scholar 

  138. Liao F, Rabin RL, Smith CS et al (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162:186–194

    CAS  PubMed  Google Scholar 

  139. Varona R, Villares R, Carramolino L et al (2001) CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 107:R37–R45

    Article  CAS  PubMed  Google Scholar 

  140. Hirota K, Yoshitomi H, Hashimoto M et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812

    Article  CAS  PubMed  Google Scholar 

  141. Yamazaki T, Yang XO, Chung Y et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401

    CAS  PubMed  Google Scholar 

  142. Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    Article  CAS  PubMed  Google Scholar 

  143. Annunziato F, Cosmi L, Santarlasci V et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  CAS  PubMed  Google Scholar 

  144. Kleinschek MA, Boniface K, Sadekova S et al (2009) Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 206:525–534

    Article  CAS  PubMed  Google Scholar 

  145. Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 40:710–712

    Article  CAS  PubMed  Google Scholar 

  146. Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204

    Article  CAS  PubMed  Google Scholar 

  147. Cosmi L, De Palma R, Santarlasci V et al (2008) Human interleukin 17-producing cells originate from a CD161 + CD4+ T cell precursor. J Exp Med 205:1903–1916

    Article  CAS  PubMed  Google Scholar 

  148. Zhu J, Davidson TS, Wei G et al (2009) Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 206:329–341

    Article  CAS  PubMed  Google Scholar 

  149. Bending D, De La Pena H, Veldhoen M et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572

    Article  CAS  Google Scholar 

  150. Lee YK, Turner H, Maynard CL et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107

    Article  CAS  PubMed  Google Scholar 

  151. Lexberg MH, Taubner A, Forster A et al (2008) Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38:2654–2664

    Article  CAS  PubMed  Google Scholar 

  152. Nurieva R, Yang XO, Chung Y et al (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565–2568

    Article  CAS  PubMed  Google Scholar 

  153. Wei G, Wei L, Zhu J et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr B. Stockinger for critical reading of the manuscript. Also, we would like to acknowledge the Medical Research Council UK for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Veldhoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, K., Martin, B. & Veldhoen, M. Development, regulation and functional capacities of Th17 cells. Semin Immunopathol 32, 3–16 (2010). https://doi.org/10.1007/s00281-009-0187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00281-009-0187-y

Keywords