Skip to main content

Microarray Data Normalization: The Art and Science of Overcoming Technical Variance to Maximize the Detection of Biologic Variance

  • Chapter
A Beginner’s Guide to Microarrays

Abstract

A central goal in the analysis of microarray data is to identify and characterize genes and gene groups that exhibit differential and coordinate expression patterns as a function of biological state differences. This would be an easy task indeed if all gene expression measurements obtained from microarrays were perfectly accurate and consistent. Unfortunately, the reality of the situation is quite different. Microarray-based gene expression measurements are affected by a host of unwanted technical errors, linear and non-linear systematic biases, as well as additional or hidden biologic variances that pertain to individual or state variations that are not necessarily those that are to be evaluated in an experiment. Taking these effects all together, observed differences in gene expression levels between two samples for a given gene can be represented as the sum of two components: technical variance and biological variance. The goals of microarray data normalization are to identify and strip out as much technical variation as possible such that the most accurate expression levels associated with different biological states can be determined. Ideally, one would hope to understand the expression of each gene in relation to all other genes on a microarray, across a series of microarrays, as well as to those measured by other technologies, in other experiments, and in relation to the activity of the entire genome. In other words, exact absolute gene expression levels for all genes under any circumstance. Short of this, optimal normalization techniques seek to maximize the usability of all measurements per array and per array series. Correcting for any technical variation thus allows for the highest resolution view of biologically based variations in gene expression. Following optimal normalization procedures, the multiple origins of biological variation can be dissected in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

eBook
USD 23.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bates MD, Erwin CR, Sanford LP, Wiginton D, Bezerra JA, Schatzman LC, Jegga AG, Ley-Ebert C, Williams SS, Steinbrecher KA, Warner BW, Cohen MB, Aronow BJ (2002) Novel genes and functional relationships in the adult mouse gastrointestinal tract identified by microarray analysis. Gastroenterology 122(5): 1467–82

    Article  PubMed  CAS  Google Scholar 

  2. Cho RJ, Campbell M J, Winzeler E A, Steinmetz L, Conway A, Wodicka L, Wolfsberg T G, Gabrielian A E, Landsman D, Lockhart D J and Davis R W (1998) A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Mol Cell 2: pp 65–73.

    Article  PubMed  CAS  Google Scholar 

  3. Colantuoni C, Henry G, Zeger S. and Pevsner J. (2002) Local Mean Normalization of Microarray Element Signal Intensities Across an Array Surface: Quality Control and Correction of Spatially Systematic Artifacts. Biotechniques 32: pp 1316–1320.

    PubMed  CAS  Google Scholar 

  4. Dudoit S, Yang Y, M.J. and Speed T P (2000) Statistical Methods for Identifying Differentially Expressed Genes in Replicated CDNA Microarray Experiments. Berkeley Tech Report #578 from Aug 2000.

    Google Scholar 

  5. Eisen MB, Spellman P T, Brown P O and Botstein D (1998) Cluster Analysis and Display of Genome-Wide Expression Patterns. Proc Natl Acad Sci USA 95: pp 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  6. Finkelstei D, Ewing R, Gollub J, Sterky F, Cherry J M and Somerville S (2002) Microarray Data Quality Analysis: Lessons From the AFGC Project. Arabidopsis Functional Genomics Consortium. Plant Mol Biol 48: pp 119–131.

    Article  Google Scholar 

  7. Goryachev AB, Macgregor P F and Edwards A M (2001) Unfolding of Microarray Data. J Comput Biol 8: pp 443–461.

    Article  PubMed  CAS  Google Scholar 

  8. Hill AA, Brown E L, Whitley M Z, Tucker-Kellogg G, Hunter C P and Slonim D K (2001) Evaluation of Normalization Procedures for Oligonucleeuotide Array Data Based on Spiked CRNA Controls. Genome Biol 2: pp 55.

    Article  Google Scholar 

  9. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990 Jul;9(7):811–8

    Article  PubMed  CAS  Google Scholar 

  10. Kepler TB, Crosby L and Morgan K T (2002) Normalization and Analysis of DNA Microarray Data by Self-Consistency and Local Regression. Genome Biol 3: pp 1–12.

    Article  Google Scholar 

  11. Kerr KM and Churchill G A (2001) Experimental Design for Gene Expression Microarrays. Biostatistics 2: pp 183–201.

    Article  PubMed  Google Scholar 

  12. Kerr KM, Martin M and Churchill G A (2000) Analysis of Variance for Gene Expression Microarray Data. Journal of Computational Biology 7: pp 819–837.

    Article  PubMed  CAS  Google Scholar 

  13. Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H and Herzel H (2000) Normalization Strategies for CDNA Microarrays. Nucleic Acids Res 28: pp E47.

    Article  PubMed  CAS  Google Scholar 

  14. Tsodikov A, Szabo A and Jones D (2002) Adj ustments and Measures of Differential Expression for Microarray Data. Bioinformatics 18: pp 251–260.

    Article  PubMed  CAS  Google Scholar 

  15. Wolfinger RD, Gibson G, Wolfinger E.D., Bennett L, Hamadeh H, Bushel P, Afshari C and Paules R S (2001) Assessing Gene Significance From CDNA Microarray Expression Data Via Mixed Models. Submitted.

    Google Scholar 

  16. Workman C, Jensen L J, Jarmer H, Berka R, Gautier L, Nielsen H B, Saxild H, Nielsen C, Brunak S and Knudsen S (2002) A New Non-Linear Normalization Method for Reducing Variability in DNA Microarray Experiments. Genome Biol 3: pp 48.1–48.16.

    Article  Google Scholar 

  17. Yang MC, Ruan Q G, Yang J J, Eckenrode S, Wu S, Mclndoe R A and She J X (2001) A Statistical Method for Flagging Weak Spots Improves Normalization and Ratio Estimates in Microarrays. Physiol Genomics 7: pp 45–53.

    PubMed  CAS  Google Scholar 

  18. Yang Y, Dudoit S, Luu P and Speed T (2000) Normalization for CDNA Microarray Data. SPIE BiOS 2001, San Jose, California.

    Google Scholar 

  19. Yang Y and Speed T P (2002) Design Issues for CDNA Microarray Experiments. Genetics 3: pp 579–588.

    PubMed  CAS  Google Scholar 

  20. Zien A, Aigner T, Zimmer R and Lengauer T (2001) Centralization: a New Method for the Normalization of Gene Expression Data. Bioinformatics 17 Suppl 1: pp S323–S331.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sartor, M.A., Medvedovic, M., Aronow, B.J. (2003). Microarray Data Normalization: The Art and Science of Overcoming Technical Variance to Maximize the Detection of Biologic Variance. In: Blalock, E.M. (eds) A Beginner’s Guide to Microarrays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8760-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8760-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4684-5

  • Online ISBN: 978-1-4419-8760-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics