Skip to main content
Log in

Single-cell transcriptomic analysis reveals immune remodeling in bone marrow during aged sepsis

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging substantially increases susceptibility to sepsis, yet the underlying mechanisms of immune dysfunction in the elderly remain incompletely understood. Polymicrobial sepsis was induced in young and aged male mice via cecal ligation and puncture (CLP). Bone marrow from four groups (Y-Sham, n = 2; Y-CLP, n = 3; A-Sham, n = 2; A-CLP, n = 3) was analyzed by single-cell RNA sequencing and intercellular communication inferred via CellChat. Age-related immune changes were evaluated, and Transwell assays were used to assess myeloid cell migration. Aged septic mice showed worsened organ damage and systemic inflammation, with reduced adaptive (18.7% vs. 41.3%) and increased innate immunity (58.8% vs. 37.7%, A-CLP vs. Y-CLP). Neutrophil chemotaxis was impaired; monocytes and macrophages adopted a hyperinflammatory yet functionally exhausted phenotype; dendritic cells showed increased antigen presentation with diminished mobility; B cell maturation was disrupted with regression to earlier developmental stages; and T cells shifted toward stress-responsive and regulatory programs. We identified a cluster-specific expansion of HSCs in aged sepsis (39.8% vs. 31.2% in A-CLP vs. Y-CLP) with impaired Lgals9–Cd44-mediated intercellular communication. Myeloid cell migration was impaired in A-CLP but partially restored by Lgals9–Cd44 activation. This study presents a comprehensive single-cell map of bone marrow immune dysfunction in aged sepsis and identifies impaired HSC–myeloid communication as a critical mechanism driving immune failure. Therapeutically targeting the Lgals9–Cd44 axis may restore immune coordination in elderly sepsis, although its clinical feasibility and safety remain to be validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

In the meantime, the data are available from the corresponding author upon reasonable request.

Abbreviations

LPS :

Lipopolysaccharide

scRNA-seq :

Single-cell RNA sequencing

CLP :

Cecal ligation and puncture

PCA :

Principal Component Analysis

UMAP :

Uniform Manifold Approximation and Projection

SNN :

Shared nearest neighbor

DEGs :

Differentially expressed genes

GO :

Gene Ontology

IL-6 :

Interleukin-6

TNF-α :

Tumor Necrosis Factor-alpha

ELISA :

Enzyme-Linked Immunosorbent Assay

H&E :

Hematoxylin and Eosin

BMDNs :

Bone Marrow–Derived Neutrophils

BMDMs :

Bone Marrow–Derived Macrophages

DCs :

Dendritic cells

pDCs :

Plasmacytoid dendritic cells

HSCs :

Hematopoietic stem cells

ROS :

Reactive oxygen species

Treg :

Regulatory T cell

References

  1. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392(10141):75–87.

    Article  PubMed  Google Scholar 

  2. Rowe TA, McKoy JM. Sepsis in older adults. Infect Dis Clin North Am. 2017;31(4):731–42. https://doi.org/10.1016/j.idc.2017.07.010.

    Article  PubMed  Google Scholar 

  3. Martín S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: a review. Front Med. 2017;4:20. https://doi.org/10.3389/fmed.2017.00020.

    Article  Google Scholar 

  4. Wang Y, Zhang H, Miao C. Unraveling immunosenescence in sepsis: from cellular mechanisms to therapeutics. Cell Death Dis. 2025;16(1):393. https://doi.org/10.1038/s41419-025-07714-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noh JY, Han HW, Kim DM, Giles ED, Farnell YZ, Wright GA, et al. Innate immunity in peripheral tissues is differentially impaired under normal and endotoxic conditions in aging. Front Immunol. 2024;15:1357444. https://doi.org/10.3389/fimmu.2024.1357444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Exp Gerontol. 2008;43(8):718–28. https://doi.org/10.1016/j.exger.2008.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nacionales DC, Gentile LF, Vanzant E, Lopez MC, Cuenca A, Cuenca AG, et al. Aged mice are unable to mount an effective myeloid response to sepsis. J Immunol. 2014;192(2):612–22. https://doi.org/10.4049/jimmunol.1302109.

    Article  CAS  PubMed  Google Scholar 

  8. Akbar AN, Henson SM, Lanna A. Senescence of t lymphocytes: implications for enhancing human immunity. Trends Immunol. 2016;37(12):866–76. https://doi.org/10.1016/j.it.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  9. Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB. B cell immunosenescence. Annu Rev Cell Dev Biol. 2020;36:551–74. https://doi.org/10.1146/annurev-cellbio-011620-034148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carey A, Nguyen K, Kandikonda P, Kruglov V, Bradley C, Dahlquist KJV, et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 2024;43(3):113967. https://doi.org/10.1016/j.celrep.2024.113967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848–60. https://doi.org/10.1016/j.devcel.2021.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farhat A, Radhouani M, Deckert F, Zahalka S, Pimenov L, Fokina A, et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci Immunol. 2025;10(105):eadk5041. https://doi.org/10.1126/sciimmunol.adk5041.

    Article  CAS  PubMed  Google Scholar 

  13. Davis FM, Schaller MA, Dendekker A, Joshi AD, Kimball AS, Evanoff H, et al. Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler Thromb Vasc Biol. 2019;39(11):2353–66. https://doi.org/10.1161/atvbaha.119.312754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He W, Yao C, Wang K, Duan Z, Wang S, Xie L. Single-cell landscape of immunological responses in elderly patients with sepsis. Immun Ageing. 2024;21(1):40. https://doi.org/10.1186/s12979-024-00446-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol. 2016;7:502. https://doi.org/10.3389/fimmu.2016.00502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin H, Aziz M, Murao A, Kobritz M, Shih AJ, Adelson RP, et al. Antigen-presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis. J Clin Invest. 2023. https://doi.org/10.1172/jci164585.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21. https://doi.org/10.1016/j.cell.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. https://doi.org/10.1186/s13059-019-1874-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mrna quantification and differential analysis with census. Nat Methods. 2017;14(3):309–15. https://doi.org/10.1038/nmeth.4150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. https://doi.org/10.1038/s41586-019-0969-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun. 2021;12(1):1088. https://doi.org/10.1038/s41467-021-21246-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–4. https://doi.org/10.1038/s41591-020-0901-9.

    Article  CAS  PubMed  Google Scholar 

  23. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25. https://doi.org/10.1016/j.cels.2015.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith KM, Mrozek JD, Simonton SC, Bing DR, Meyers PA, Connett JE, et al. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Crit Care Med. 1997;25(11):1888–97. https://doi.org/10.1097/00003246-199711000-00030.

    Article  CAS  PubMed  Google Scholar 

  25. Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology. 1997;26(6):1513–20. https://doi.org/10.1002/hep.510260619.

    Article  CAS  PubMed  Google Scholar 

  26. Ren Y, Chen L, Yuan Y, Xu J, Xia F, Zhu J, et al. Evaluation of renal cold ischemia-reperfusion injury with intravoxel incoherent motion diffusion-weighted imaging and blood oxygenation level-dependent MRI in a rat model. Front Physiol. 2023;14:1159741. https://doi.org/10.3389/fphys.2023.1159741.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kishimoto C, Kawamata H, Sakai S, Shinohara H, Ochiai H. Enhanced production of macrophage inflammatory protein 2 (MIP-2) by in vitro and in vivo infections with encephalomyocarditis virus and modulation of myocarditis with an antibody against MIP-2. J Virol. 2001;75(3):1294–300. https://doi.org/10.1128/jvi.75.3.1294-1300.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Z, Tao Z, Zhang Z, Zhang W, Zhang X, Xu X, et al. Single-cell transcriptomic analysis reveals AP-1 downregulation remodels bone marrow environment and contributes to osteopenia in ovariectomized mice. J Orthop Translat. 2025;52:1–13. https://doi.org/10.1016/j.jot.2025.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Inoue S, Suzuki K, Komori Y, Morishita Y, Suzuki-Utsunomiya K, Hozumi K, et al. Persistent inflammation and T cell exhaustion in severe sepsis in the elderly. Crit Care. 2014;18(3):R130. https://doi.org/10.1186/cc13941.

    Article  PubMed  PubMed Central  Google Scholar 

  30. He W, Xiao K, Fang M, Xie L. Immune cell number, phenotype, and function in the elderly with sepsis. Aging Dis. 2021;12(1):277–96. https://doi.org/10.14336/ad.2020.0627.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nacionales DC, Szpila B, Ungaro R, Lopez MC, Zhang J, Gentile LF, et al. A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. J Immunol. 2015;195(5):2396–407. https://doi.org/10.4049/jimmunol.1500984.

    Article  CAS  PubMed  Google Scholar 

  32. Drew W, Wilson DV, Sapey E. Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol. 2018;105:70–7. https://doi.org/10.1016/j.exger.2017.12.020.

    Article  PubMed  Google Scholar 

  33. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. https://doi.org/10.1007/s12016-020-08804-7.

    Article  CAS  PubMed  Google Scholar 

  34. Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cazalis MA, Friggeri A, Cavé L, Demaret J, Barbalat V, Cerrato E, et al. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Crit Care. 2013;17(6):R287. https://doi.org/10.1186/cc13150.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rondina MT, Carlisle M, Fraughton T, Brown SM, Miller RR 3rd, Harris ES, et al. Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock. J Gerontol A Biol Sci Med Sci. 2015;70(2):225–31. https://doi.org/10.1093/gerona/glu082.

  37. Schrijver DP, Röring RJ, Deckers J, de Dreu A, Toner YC, Prevot G, et al. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. Nat Biomed Eng. 2023;7(9):1097–112. https://doi.org/10.1038/s41551-023-01050-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: components and modifiers. FEBS J. 2020;287(13):2636–46. https://doi.org/10.1111/febs.15282.

    Article  CAS  PubMed  Google Scholar 

  39. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27. https://doi.org/10.4049/jimmunol.0901022.

    Article  CAS  PubMed  Google Scholar 

  40. Janssen N, Derhovanessian E, Demuth I, Arnaout F, Steinhagen-Thiessen E, Pawelec G. Responses of dendritic cells to TLR-4 stimulation are maintained in the elderly and resist the effects of CMV infection seen in the young. J Gerontol A Biol Sci Med Sci. 2016;71(9):1117–23. https://doi.org/10.1093/gerona/glv119.

    Article  CAS  PubMed  Google Scholar 

  41. Bouras M, Asehnoune K, Roquilly A. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front Immunol. 2018;9:2590. https://doi.org/10.3389/fimmu.2018.02590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roquilly A, Broquet A, Jacqueline C, Gautreau L, Segain JP, de Coppet P, et al. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells. Eur Respir J. 2013;42(5):1365–78. https://doi.org/10.1183/09031936.00152612.

    Article  CAS  PubMed  Google Scholar 

  43. Roquilly A, McWilliam HEG, Jacqueline C, Tian Z, Cinotti R, Rimbert M, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity. 2017;47(1):135-47.e5. https://doi.org/10.1016/j.immuni.2017.06.021.

    Article  CAS  PubMed  Google Scholar 

  44. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG, Nacionales DC, et al. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med. 2011;208(8):1673–82. https://doi.org/10.1084/jem.20101715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan S, Jiao Y, Wang J, Tang D, Xu S, Wang R, et al. Impaired b-cell maturation contributes to reduced b cell numbers and poor prognosis in sepsis. Shock. 2020;54(1):70–7. https://doi.org/10.1097/shk.0000000000001478.

    Article  CAS  PubMed  Google Scholar 

  46. Skirecki T, Swacha P, Hoser G, Golab J, Nowis D, Kozłowska E. Bone marrow is the preferred site of memory CD4+ T cell proliferation during recovery from sepsis. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134475.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. https://doi.org/10.1038/nature12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yin J, Li L, Wang C, Zhang Y. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol. 2020;88:106929. https://doi.org/10.1016/j.intimp.2020.106929.

    Article  CAS  PubMed  Google Scholar 

  49. Fujihara S, Mori H, Kobara H, Rafiq K, Niki T, Hirashima M, et al. Galectin-9 in cancer therapy. Recent Pat Endocr Metab Immune Drug Discov. 2013;7(2):130–7. https://doi.org/10.2174/1872214811307020006.

    Article  CAS  PubMed  Google Scholar 

  50. Lai JH, Luo SF, Wang MY, Ho LJ. Translational implication of Galectin-9 in the pathogenesis and treatment of viral infection. Int J Mol Sci. 2017;18(10):2108. https://doi.org/10.3390/ijms18102108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, et al. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol. 2023;11:1332205. https://doi.org/10.3389/fcell.2023.1332205.

    Article  PubMed  Google Scholar 

  52. Pang N, Tudahong S, Zhu Y, He J, Han C, Chen G, et al. Galectin-9 alleviates acute graft-versus-host disease after haplo-hematopoietic stem cell transplantation by regulating regulatory T cell/effector T cell imbalance. Immunity Inflamm Dis. 2024;12(2):e1177. https://doi.org/10.1002/iid3.1177.

    Article  CAS  Google Scholar 

  53. Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol. 2024;15:1469794. https://doi.org/10.3389/fimmu.2024.1469794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the staff of Hypers Biotechnologies Genomic Center for their technical support in single-cell RNA sequencing and data processing. We also acknowledge the support from colleagues at the Department of Critical Care Medicine and the Zhejiang Key Laboratory of Geriatrics for their valuable assistance during the study.

Funding

This work was supported by grants from Zhejiang Provincial Natural Science Foundation of China (LY21H150002).

Author information

Authors and Affiliations

Authors

Contributions

YJL designed the study, performed the experiments, and analyzed the data. ZYZ assisted with data interpretation, statistical analysis, and manuscript drafting. MKY and YZW contributed to animal handling, sample preparation, and data collection. JY supervised the study, provided critical care expertise, and revised the manuscript. ZXY provided conceptual guidance, contributed to study design, and oversaw the bioinformatics analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhouxin Yang or Jing Yan.

Ethics declarations

Ethics approval

Animal studies were approved by the the Zhejiang Experimental Animal Center (SCXK 2024–0002).

Consent for publication

Not applicable.

Competing interests

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 306 KB)

ESM 2

(PDF 5.31 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhou, Z., Yang, M. et al. Single-cell transcriptomic analysis reveals immune remodeling in bone marrow during aged sepsis. GeroScience (2025). https://doi.org/10.1007/s11357-025-01966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11357-025-01966-2

Keywords