Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Similar content being viewed by others
References
Takei H, Araki A, Watanabe H et al (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59:229–240. https://doi.org/10.1002/jlb.59.2.229
Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783
Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582. https://doi.org/10.1038/nrmicro1710
Urban C, Zychlinsky A (2007) Netting bacteria in sepsis. Nat Med 13:403–404
Scapini P, Cassatella MA (2014) Social networking of human neutrophils within the immune system. Blood 124:710–719
Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942
Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531
Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(80):1532–1535. https://doi.org/10.1126/science.1092385
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691. https://doi.org/10.1083/jcb.201006052
Reeves EP, Lu H, Jacobs HL et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297. https://doi.org/10.1038/416291a
Smith CK, Vivekanandan-Giri A, Tang C et al (2014) Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheum 66:2532–2544. https://doi.org/10.1002/art.38703
Parker H, Winterbourn CC (2013) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3:424. https://doi.org/10.3389/fimmu.2012.00424
Hawez A, Al-Haidari A, Madhi R et al (2019) MiR-155 regulates PAD4-dependent formation of neutrophil extracellular traps. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02462
Lewis HD, Liddle J, Coote JE et al (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11:189–191. https://doi.org/10.1038/nchembio.1735
Wang Y, Li M, Stadler S et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213. https://doi.org/10.1083/jcb.200806072
Martinod K, Demers M, Fuchs TA et al (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 110:8674–8679. https://doi.org/10.1073/pnas.1301059110
Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025. https://doi.org/10.1038/ni.2987
Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653
Petretto A, Bruschi M, Pratesi F et al (2019) Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis. PLoS One 14:e0218946. https://doi.org/10.1371/journal.pone.0218946
Bruschi M, Bonanni A, Petretto A et al (2020) Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47:377–386. https://doi.org/10.3899/jrheum.181232
Park J, Wysocki RW, Amoozgar Z et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8. https://doi.org/10.1126/scitranslmed.aag1711
Liu D, Yang P, Gao M et al (2019) NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci 133:565–582. https://doi.org/10.1042/CS20180600
Hirota T, Levy JH, Iba T (2020) The influence of hyperglycemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. Microcirculation. https://doi.org/10.1111/micc.12617
Clark SR, Ma AC, Tavener SA et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469. https://doi.org/10.1038/nm1565
Vogel S, Bodenstein R, Chen Q et al (2015) Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 125:4638–4654. https://doi.org/10.1172/JCI81660
Etulain J, Martinod K, Wong SL et al (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126:242–246. https://doi.org/10.1182/blood-2015-01-624023
Schauer C, Janko C, Munoz LE et al (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20:511–517. https://doi.org/10.1038/nm.3547
Neumann A, Berends ETM, Nerlich A et al (2014) The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 464:3–11. https://doi.org/10.1042/BJ20140778
Burgener SS, Schroder K (2019) Neutrophil extracellular traps in host defense. https://doi.org/10.1101/cshperspect.a037028
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L et al (2017) Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol 8:81
Borchers AT, Chang C, Gershwin ME, Gershwin LJ (2013) Respiratory syncytial virus - a comprehensive review. Clin Rev Allergy Immunol 45:331–379
Saitoh T, Komano J, Saitoh Y et al (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:109–116. https://doi.org/10.1016/j.chom.2012.05.015
Narasaraju T, Yang E, Samy RP et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210. https://doi.org/10.1016/j.ajpath.2011.03.013
Muraro SP, De Souza GF, Gallo SW et al (2018) Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-32576-y
Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27:479–493
Hoeksema M, Tripathi S, White M et al (2015) Arginine-rich histones have strong antiviral activity for influenza a viruses. Innate Immun 21:736–745. https://doi.org/10.1177/1753425915593794
McCormick A, Heesemann L, Wagener J et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936. https://doi.org/10.1016/j.micinf.2010.06.009
Amulic B, Knackstedt SL, Abu Abed U et al (2017) Cell-cycle proteins control production of neutrophil extracellular traps. Dev Cell 43:449–462.e5. https://doi.org/10.1016/j.devcel.2017.10.013
Bruns S, Kniemeyer O, Hasenberg M et al (2010) Production of extracellular traps against aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin roda. PLoS Pathog 6:1–18. https://doi.org/10.1371/journal.ppat.1000873
Carroll GM, Burns GL, Petit JA et al (2020) Does postoperative inflammation or sepsis generate neutrophil extracellular traps that influence colorectal cancer progression? A systematic review. Surg Open Sci. https://doi.org/10.1016/j.sopen.2019.12.005
Baker VS, Imade GE, Molta NB et al (2008) Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J:7. https://doi.org/10.1186/1475-2875-7-41
Abdallah DSA, Lin C, Ball CJ et al (2012) Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 80:768–777. https://doi.org/10.1128/IAI.05730-11
Guimarães-Costa AB, Nascimento MTC, Froment GS et al (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106:6748–6753. https://doi.org/10.1073/pnas.0900226106
Díaz-Godínez C, Carrero JC (2019) The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep. https://doi.org/10.1042/BSR20180916
Cools-Lartigue J, Spicer J, Najmeh S, Ferri L (2014) Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 71:4179–4194
Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR (2017) Neutrophil extracellular trap production in patients with colorectal cancer in vitro. https://doi.org/10.1155/2017/4915062
Snoderly HT, Boone BA, Bennewitz MF (2019) Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 21:1–13
Alfaro C, Teijeira A, Oñate C et al (2016) Tumor-produced Interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 22:3924–3936. https://doi.org/10.1158/1078-0432.CCR-15-2463
Zhu L, Liu L, Zhang Y et al (2018) High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza a infection. J Infect Dis 217:428–437. https://doi.org/10.1093/infdis/jix475
Li RHL, Johnson LR, Kohen C, Tablin F (2018) A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluorescence microscopy. BMC Vet Res 14:1–7. https://doi.org/10.1186/s12917-018-1523-z
Thålin C, Hisada Y, Lundström S et al (2019) Neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 39:1724–1738. https://doi.org/10.1161/ATVBAHA.119.312463
Li RHL, Tablin F (2018) A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci 5:291
Ekaney ML, Otto GP, Sossdorf M et al (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18:543. https://doi.org/10.1186/s13054-014-0543-8
Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487:318–322
Keshari RS, Jyoti A, Dubey M et al (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One:7. https://doi.org/10.1371/journal.pone.0048111
Xu J, Zhang X, Pelayo R et al (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15:1318–1321. https://doi.org/10.1038/nm.2053
Abrams ST, Zhang N, Manson J et al (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187:160–169. https://doi.org/10.1164/rccm.201206-1037OC
Gupta S, Kaplan MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12:402–413
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL (2018) Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 125:25–35. https://doi.org/10.1016/j.freeradbiomed.2018.03.049
Hoffmann JHO, Enk AH (2016) Neutrophil extracellular traps in dermatology: caught in the NET. J Dermatol Sci 84:3–10
Engler D, Chezuba HP, Masuku P (2017) Psoriasis. SA Pharm J 84:38–42
Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873
Boehncke WH, Schön MP (2015) Psoriasis. Lancet 386:983–994
Pinegin B, Vorobjeva N, Pinegin V (2015) Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 14:633–640
Witko-Sarsat V, Pederzoli-Ribeil M, Hirsh E et al (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32:117–124
Dörner T, Giesecke C, Lipsky PE (2011) Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 13. https://doi.org/10.1186/ar3433
Lisnevskaia L, Murphy G, Isenberg D (2014) Systemic lupus erythematosus. In: The Lancet. Lancet Publishing Group, p 1878–1888. https://doi.org/10.1016/S0140-6736(14)60128-8
Pan L, Lu MP, Wang JH et al (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30
Odqvist L, Jevnikar Z, Riise R et al (2019) Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis 78:1363–1370. https://doi.org/10.1136/annrheumdis-2019-215434
Chen W, Wang Q, Ke Y et al (2018) Review article neutrophil function in an inflammatory milieu of rheumatoid arthritis. https://doi.org/10.1155/2018/8549329
Carmona-Rivera C, Carlucci PM, Moore E et al (2017) Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2. https://doi.org/10.1126/sciimmunol.aag3358
Hidalgo AI, Carretta MD, Alarcón P et al (2019) Pro-inflammatory mediators and neutrophils are increased in synovial fluid from heifers with acute ruminal acidosis. BMC Vet Res 15:1–10. https://doi.org/10.1186/s12917-019-1974-x
Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5:178ra40. https://doi.org/10.1126/scitranslmed.3005580
Apel F, Zychlinsky A, Kenny EF (2018) The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol 14:467–475
Wigerblad G, Kaplan MJ (2020) NETs spread ever wider in rheumatic diseases. Nat Rev Rheumatol 16:73–74
Herold KC, Vignali DAA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13:243–256
Berezin A (2019) Neutrophil extracellular traps: the core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 13:3017–3023
Jennette JC, Falk RJ (1997) Small-vessel vasculitis. N Engl J Med 337:1512–1523. https://doi.org/10.1056/NEJM199711203372106
Hunder GG, Arend WP, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of vasculitis: introduction. Arthritis Rheum 33:1065–1067. https://doi.org/10.1002/art.1780330802
Goeser MR, Laniosz V, Wetter DA (2014) A practical approach to the diagnosis, evaluation, and management of cutaneous small-vessel vasculitis. Am J Clin Dermatol 15:299–306. https://doi.org/10.1007/s40257-014-0076-6
Nakazawa D, Tomaru U, Yamamoto C et al (2012) Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol 3. https://doi.org/10.3389/fimmu.2012.00333
Nakazawa D, Shida H, Tomaru U et al (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25:990–997. https://doi.org/10.1681/ASN.2013060606
Mitroulis I, Kambas K, Chrysanthopoulou A et al (2011) Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One. https://doi.org/10.1371/journal.pone.0029318
Lee KH, Kronbichler A, Park DDY et al (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16:1160–1173. https://doi.org/10.1016/j.autrev.2017.09.012
Desai J, Steiger S, Anders HJ (2017) Molecular pathophysiology of gout. Trends Mol Med
Chambers TJ, Morson BC (1979) The granuloma in Crohn’s disease. Gut 20:269–274. https://doi.org/10.1136/gut.20.4.269
Hedin CRH, Vavricka SR, Stagg AJ et al (2019) Gene and Mirna regulatory networks during different stages of Crohn’s disease. J Crohn's Colitis 13:541–554. https://doi.org/10.1093/ECCO-JCC
Rogers BHG, Clark LM, Kirsner JB (1971) The epidemiologic and demographic characteristics of inflammatory bowel disease: an analysis of a computerized file of 1400 patients. J Chronic Dis 24:743–773. https://doi.org/10.1016/0021-9681(71)90087-7
Parkes G, Clare S, Goulding D et al (2006) Neutrophil activation and neutrophil extracellular trap formation in inflammatory bowel disease. Gastroenterology 130:A235
Gottlieb Y, Elhasid R, Berger-Achituv S et al (2018) Neutrophil extracellular traps in pediatric inflammatory bowel disease. Pathol Int. https://doi.org/10.1111/pin.12715
Dinallo V, Marafini I, Di Fusco D et al (2019) Neutrophil extracellulartraps sustain inflammatory signals in ulcerative colitis. J Crohn's Colitis. https://doi.org/10.1093/ecco-jcc/jjy215
Wärnberg J, Marcos A (2008) Low-grade inflammation and the metabolic syndrome in children and adolescents. Curr Opin Lipidol 19:11–15
Castro AM, Macedo-de la Concha LE, Pantoja-Meléndez CA (2017) Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Médica del Hosp Gen México 80:101–105. https://doi.org/10.1016/j.hgmx.2016.06.011
Wong SL, Demers M, Martinod K et al (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. https://doi.org/10.1038/nm.3887
Frühbeck G (2004) The adipose tissue as a source of vasoactive factors. Curr Med Chem Cardiovasc Hematol Agents 2:197–208
Maurizi G, Della Guardia L, Maurizi A, Poloni A (2018) Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol 233:88–97. https://doi.org/10.1002/jcp.25855
Bonaventura A, Vecchié A, Abbate A, Montecucco F (2020) Neutrophil extracellular traps and cardiovascular diseases: an update. Cells 9:231. https://doi.org/10.3390/cells9010231
D’Abbondanza M, Martorelli EE, Ricci MA et al (2019) Increased plasmatic NETs by-products in patients in severe obesity. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-51220-x
Narayana Moorthy A, Narasaraju T, Rai P et al (2013) In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 4:56. https://doi.org/10.3389/fimmu.2013.00056
Moorthy AN, Tan KB, Wang S et al (2016) Effect of high-fat diet on the formation of pulmonary neutrophil extracellular traps during influenza pneumonia in BALB/c mice. Front Immunol 7:289. https://doi.org/10.3389/fimmu.2016.00289
Tarantino E, Amadio P, Squellerio I et al (2016) Role of thromboxane-dependent platelet activation in venous thrombosis: aspirin effects in mouse model. Pharmacol Res 107:415–425. https://doi.org/10.1016/j.phrs.2016.04.001
Caudrillier A, Kessenbrock K, Gilliss BM et al (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122:2661–2671. https://doi.org/10.1172/JCI61303
Ortiz-Muñoz G, Mallavia B, Bins A et al (2014) Aspirin-triggered 15-epi-lipoxin a4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. https://doi.org/10.1182/blood-2014-03-562876
Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304
Chen J, Shetty S, Zhang P et al (2014) Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2014.03.017
Tilgner J, Von Trotha KT, Gombert A et al (2016) Aspirin, but NotTirofiban displays protective effects in endotoxin induced lung injury. PLoS One. https://doi.org/10.1371/journal.pone.0161218
Sayah DM, Mallavia B, Liu F et al (2015) Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 191:455–463. https://doi.org/10.1164/rccm.201406-1086OC
Lapponi MJ, Carestia A, Landoni VI et al (2013) Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther 345:430–437. https://doi.org/10.1124/jpet.112.202879
Matsuda S, Koyasu S (2000) Mechanisms of action of cyclosporine. Immunopharmacology 47:119–125. https://doi.org/10.1016/S0162-3109(00)00192-2
Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transp Secur. https://doi.org/10.1155/2012/230386
Palmeiro BS (2013) Cyclosporine in veterinary dermatology. Vet Clin North Am Small Anim Pract (43), 153–171. https://doi.org/10.1016/j.cvsm.2012.09.007
Liberman AC, Druker J, Refojo D, Arzt E (2008) Molecular mechanisms of action of some immunosuppressive drugs. Medicina 68:455–464
Gupta AK, Giaglis S, Hasler P, Hahn S (2014) Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One:9. https://doi.org/10.1371/journal.pone.0097088
Fric J, Zelante T, Wong AYW et al (2012) NFAT control of innate immunity. Blood 120:1380–1389. https://doi.org/10.1182/blood-2012-02-404475
Jha V, Chugh KS (2002) Posttransplant infections in the tropical countries. Artif Organs. https://doi.org/10.1046/j.1525-1594.2002.07069.x
Witalison EE, Cui X, Causey CP et al (2015) Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. https://doi.org/10.18632/oncotarget.5937
Knight JS, Subramanian V, O’dell AA et alPeptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. https://doi.org/10.1136/annrheumdis-2014-205365
Fadini GP, Menegazzo L, Rigato M et al (2016) NETosis delays diabetic wound healing in mice and humans. Diabetes. https://doi.org/10.2337/db15-0863
Nakashima K, Arai S, Suzuki A et al (2013) PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression. Nat Commun. https://doi.org/10.1038/ncomms2862
Stadler SC, Vincent CT, Fedorov VD et al (2013) Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelialto-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1308362110
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science (80). https://doi.org/10.1126/science.aaa8064
Ricciotti E, Fitzgerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.110.207449
Gad SE (2014) Prostaglandins. In: Encyclopedia of toxicology, third edn
Shishikura K, Horiuchi T, Sakata N et al (2016) Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP. Br J Pharmacol 173:319–331. https://doi.org/10.1111/bph.13373
Domingo-Gonzalez R, Martínez-Colón GJ, Smith AJ et al (2016) Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin E2. Am J Respir Crit Care Med 193:186–197. https://doi.org/10.1164/rccm.201501-0161OC
Fabricius D, Neubauer M, Mandel B et al (2010) Prostaglandin E 2 inhibits IFN-α secretion and Th1 costimulation by human plasmacytoid dendritic cells via E-prostanoid 2 and E-prostanoid 4 receptor engagement. J Immunol. https://doi.org/10.4049/jimmunol.0902028
Zipfel PF, Heinen S, Józsi M, Skerka C (2006) Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 43: 97–106. https://doi.org/10.1016/j.molimm.2005.06.015
Java A, Atkinson J, Salmon J (2013) Defective complement inhibitory function predisposes to renal disease. Annu Rev Med. https://doi.org/10.1146/annurev-med-072211-110606
de Bont CM, Boelens WC, Pruijn GJM (2019) NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16: 19–27. https://doi.org/10.1038/s41423-018-0024-0
Hillmen P, Young NS, Schubert J et al (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. https://doi.org/10.1056/NEJMoa061648
DeZern AE, Brodsky RA (2015) Paroxysmal nocturnal hemoglobinuria. A Complement-Mediated Hemolytic Anemia. Hematol Oncol Clin North Am 29:479–494.https://doi.org/10.1016/j.hoc.2015.01.005
Tauber SC, Nau R (2008) Immunomodulatory properties of antibiotics. Curr Mol Pharmacol 1:68–79
Manda-Handzlik A, Bystrzycka W, Sieczkowska S et al (2017) Antibiotics modulate the ability of neutrophils to release neutrophil extracellular traps. Adv Exp Med Biol 944:47–52. https://doi.org/10.1007/5584_2016_59
Bystrzycka W, Manda-Handzlik A, Sieczkowska S et al (2017) Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int J Mol Sci 18:2666. https://doi.org/10.3390/ijms18122666
Gando S (2010) Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med
Licata G, Tuttolomondo A, Di Raimondo D et al (2009) Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb Haemost. https://doi.org/10.1160/TH08-06-0375
Nguyen D, Coull BM (2017) Thrombosis. In: Primer on cerebrovascular diseases, second edn
Helms J, Clere-Jehl R, Bianchini E et al (2017) Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats. Ann Intensive Care 7:118. https://doi.org/10.1186/s13613-017-0340-z
Dahlbäck B, Villoutreix BO (2005) The anticoagulant protein C pathway. FEBS Lett. https://doi.org/10.1016/j.febslet.2005.03.001
Howard BM, Cohen MJ (2016) Activated protein C. In: Trauma Induced Coagulopathy pp 91–114. https://doi.org/10.1007/978-3-319-28308-1
Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109:3161–3172. https://doi.org/10.1182/blood-2006-09-003004
Griffin JH, Fernández JA, Gale AJ, Mosnier LO (2007) Activated protein C. J Thromb Haemost 5:73–80. https://doi.org/10.1111/j.1538-7836.2007.02491.x.
Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. https://doi.org/10.1056/NEJM200103083441001
Vincent JL, Bernard GR, Beale R et al (2005) Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med. https://doi.org/10.1097/01.CCM.0000181729.46010.83
Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development
Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov
Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis
Iba T, Hashiguchi N, Nagaoka I et al (2015) Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med Exp 3:1–11. https://doi.org/10.1186/s40635-015-0072-z
Wildhagen KCAAAA, De Frutos PG, Reutelingsperger CP et al (2014) Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 123:1098–1101. https://doi.org/10.1182/blood-2013-07-514984
Sanchez J (2017) Low molecular weight heparins—a new tool to disetangle from the NETs. Pharmacol Res 123:157
Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N (2017) Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res 123:146–156. https://doi.org/10.1016/j.phrs.2016.08.008
Yang X, Wang H, Zhang M et al (2015) HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms. Diagn Pathol 10:134. https://doi.org/10.1186/s13000-015-0348-3
Maugeri N, Franchini S, Campana L et al (2012) Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity. https://doi.org/10.3109/08916934.2012.719946
Stark K, Philippi V, Stockhausen S et al (2016) Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. https://doi.org/10.1182/blood-2016-04-710632
Jong SP, Gamboni-Robertson F, He Q et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Phys Cell Physiol. https://doi.org/10.1152/ajpcell.00401.2005
Andrassy M, Volz HC, Igwe JC et al (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.108.769331
Huang H, Tohme S, Al-Khafaji AB et al (2015) Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62:600–614. https://doi.org/10.1002/hep.27841
Ma YH, Ma TT, Wang C et al (2016) High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther. https://doi.org/10.1186/s13075-015-0903-z
Tadie JM, Bae HB, Jiang S et al (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304:L342. https://doi.org/10.1152/ajplung.00151.2012
Dyer MR, Chen Q, Haldeman S et al (2018) Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. https://doi.org/10.1038/s41598-018-20479-x
Kang R, Zhang Q, Hou W et al (2014) Intracellular HMGB1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146:1097–1107.e8. https://doi.org/10.1053/j.gastro.2013.12.015
Okuma Y, Liu K, Wake H et al (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. https://doi.org/10.1002/ana.23602
Liu K, Mori S, Takahashi HK et al (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. https://doi.org/10.1096/fj.07-8770com
Davis AE, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104:886-93. https://doi.org/10.1160/TH10-01-0073
Bouillet L, Boccon-Gibod I, Gompel A et al (2017) Hereditary angioedema with normal C1 inhibitor: clinical characteristics and treatment response with plasma-derived human C1 inhibitor concentrate (Berinert®) in a french cohort. Eur J Dermatol https://www.ncbi.nlm.nih.gov/pubmed?term=28251901. Accessed 13 May 2020
Zuraw BL, Bork K, Binkley KE et al (2012) Hereditary angioedema with normal C1 inhibitor function: consensus of an international expert panel. Allergy Asthma Proc 33 Suppl 1:S145-S156. https://doi.org/10.2500/aap.2012.33.3627
Wygrecka M, Kosanovic D, Wujak L et al (2017) Antihistone properties of C1 esterase inhibitor protect against lung injury. Am J Respir Crit Care Med 196:186–199. https://doi.org/10.1164/rccm.201604-0712OC
Singer M, Jones AM (2010) Bench-to-bedside review: the role of C1-esterase inhibitor in sepsis and other critical illnesses. Crit Care 15:203
Liu D, Cai S, Gu X et al (2003) C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. J Immunol. https://doi.org/10.4049/jimmunol.171.5.2594
Lu F, Fernandes SM, Davis AE (2013) The effect of C1 inhibitor on myocardial ischemia and reperfusion injury. Cardiovasc Pathol. https://doi.org/10.1016/j.carpath.2012.05.003
Caliezi C, Wuillemin WA, Zeerleder S et al (2000) C1-esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev 52:91–112
Lefrançais E, Looney MR (2017) Neutralizing extracellular histones in acute respiratory distress syndrome. Am J Respir Crit Care Med 196:122–124
Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585. https://doi.org/10.1007/s00125-017-4342-z
Campbell JM (2019) Metformin. In: Encyclopedia of biomedical gerontology
Martin-Montalvo A, Mercken EM, Mitchell SJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun. https://doi.org/10.1038/ncomms3192
Menegazzo L, Scattolini V, Cappellari R et al (2018) The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol 55:593–601. https://doi.org/10.1007/s00592-018-1129-8
Gallo A, Ceolotto G, Pinton P et al (2005) Metformin prevents glucose-induced protein kinase C-β2 activation in human umbilical vein endothelial cells through an antioxidant mechanism. Diabetes. https://doi.org/10.2337/diabetes.54.4.1123
Batchuluun B, Inoguchi T, Sonoda N et al (2014) Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2013.10.025
Keyaerts E, Vijgen L, Maes P et al (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2004.08.085
Savarino A, Boelaert JR, Cassone A et al (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis Lancet Infect Dis 3:722–727. https://doi.org/10.1016/S1473-3099(03)00806-5
Touret F, de Lamballerie X (2020) Of chloroquine and COVID-19. Antivir Res 177. https://doi.org/10.1016/j.antiviral.2020.104762
Cortegiani A, Ingoglia G, Ippolito M et al (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. https://doi.org/10.1016/j.jcrc.2020.03.005
Suarez-Almazor ME, Belseck E, Shea B et al (2000) Antimalarials for treating rheumatoid arthritis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd000959
Amin M, Pushpakumar S, Muradashvili N et al (2016) Regulation and involvement of matrix metalloproteinases in vascular diseases. Front Biosci Landmark 21:89–118
Vira H, Pradhan V, Umare V et al (2019) Role of polymorphisms in MMP-9 and TIMP-1 as biomarkers for susceptibility to systemic lupus erythematosus patients. Biomark Med 13:33–43. https://doi.org/10.2217/bmm-2018-0169
Murthy P, Singhi AD, Ross MA et al (2019) Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol:10. https://doi.org/10.3389/fimmu.2019.00028
Boone BA, Murthy P, Miller-Ocuin J et al (2018) Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 18. https://doi.org/10.1186/s12885-018-4584-2
Boone BA, Orlichenko L, Schapiro NE et al (2015) The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22:326–334. https://doi.org/10.1038/cgt.2015.21
Riganti C, Gazzano E, Polimeni M et al (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem. https://doi.org/10.1074/jbc.M406314200
Massart C, Giusti N, Beauwens R et al (2014) Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter. FEBS Open Bio. https://doi.org/10.1016/j.fob.2013.11.007
Hasan RN, Schafer AI (2008) Hemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-κB. Circ Res. https://doi.org/10.1161/CIRCRESAHA.107.155143
Ostafin M, Pruchniak MP, Ciepiela O et al (2016) Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation. Anal Biochem 509:60–66. https://doi.org/10.1016/j.ab.2016.05.003
Hodgman MJ, Garrard AR (2012) A review of acetaminophen poisoning. Crit Care Clin 28:499–516. https://doi.org/10.1016/j.ccc.2012.07.006
Dekhuijzen PN, van Beurden WJ (2006) The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis 1:99–106. https://doi.org/10.2147/copd.2006.1.2.99
Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. https://doi.org/10.1016/0891-5849(89)90066-X
Aldini G, Altomare A, Baron G et al (2018) N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 52:751–762. https://doi.org/10.1080/10715762.2018.1468564
Zawrotniak M, Kozik A, Rapala-Kozik M (2015) View of selected mucolytic, anti-inflammatory and cardiovascular drugs change the ability of neutrophils to form extracellular traps (NETs). https://doi.org/10.18388/abp.2015_1055
Craver BM, Ramanathan G, Hoang S et al (2020) N-Acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. https://doi.org/10.1182/bloodadvances.2019000967
Shak S, Capon DJ, Hellmiss R et al (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 87:9188–9192. https://doi.org/10.1073/pnas.87.23.9188
Sharma P, Garg N, Sharma A et al (2019) Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 309:151354
Nishino T, Morikawa K (2002) Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 21:9022–9032
Ain QU, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205:120–127. https://doi.org/10.1016/j.jconrel.2014.12.036
Macanovic M, Sinicropi D, Shak S et al (1996) The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol 106:243–252. https://doi.org/10.1046/j.1365-2249.1996.d01-839.x
Meng W, Paunel-Görgülü A, Flohé S et al (2012) Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediat Inflamm. https://doi.org/10.1155/2012/149560
Gray RD, McCullagh BN, McCray PB (2015) NETs and CF lung disease: current status and future prospects. Antibiotics 4:62–75
Mohanty T, Fisher J, Bakochi A et al (2019) Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 10. https://doi.org/10.1038/s41467-019-09040-0
Albadawi H, Oklu R, Raacke Malley RE et al (2016) Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J Vasc Surg 64:484–493. https://doi.org/10.1016/j.jvs.2015.01.031
Trejo-Becerril C, Pérez-Cardenas E, Gutiérrez-Díaz B et al (2016) Antitumor effects of systemic DNAse i and proteases in an in vivo model. Integr Cancer Ther. https://doi.org/10.1177/1534735416631102
Kaplan JB, Lovetri K, Cardona ST et al (2012) Recombinant human DNase i decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo). https://doi.org/10.1038/ja.2011.113
Saffarzadeh M, Juenemann C, Queisser MA et al (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7. https://doi.org/10.1371/journal.pone.0032366
Jin T, Bokarewa M, Foster T et al (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176. https://doi.org/10.4049/jimmunol.172.2.1169
Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342(80):863–866. https://doi.org/10.1126/science.1242255
Ryu S, Song PI, Seo CH et al (2014) Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci. https://doi.org/10.3390/ijms15058753
McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2013.06.012
Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174. https://doi.org/10.1159/000342079
Soccol CR, de Souza Vandenberghe LP, Spier MR et al (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434
Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis. https://doi.org/10.1093/cid/civ085
Vong L, Lorentz RJ, Assa A et al (2014) Probiotic lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol. https://doi.org/10.4049/jimmunol.1302286
Liu PT, Stenger S, Li H et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science (80). https://doi.org/10.1126/science.1123933
Harvey NC, Cantorna MT (2013) Vitamin D and the immune system. In: Diet, immunity and inflammation pp 244–263. https://doi.org/10.1533/9780857095749.2.244
Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab 94:26–34. https://doi.org/10.1210/jc.2008-1454
Hewison M (2012) An update on vitamin D and human immunity. Clin Endocrinol 76:315–325. https://doi.org/10.1111/j.1365-2265.2011.04261.x
Fischer K (2019) Vitamin D. In: Principles of nutrigenetics and nutrigenomics: fundamentals of individualized nutrition pp 245–254. https://doi.org/10.1016/B978-0-12-804572-5.00032-X
Brighton TA, Eikelboom JW, Mann K et al (2012) Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med 367:1979–1987. https://doi.org/10.1056/NEJMoa1210384
Wood AJJ, Patrono C (1994) Aspirin as an antiplatelet drug. N Engl J Med 330:1287–1294. https://doi.org/10.1056/NEJM199405053301808
Catella-Lawson F, Reilly MP, Kapoor SC et al (2001) Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 345:1809–1817. https://doi.org/10.1056/NEJMoa003199
Léon C, Ravanat C, Freund M et al (2003) Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 23:1941–1947. https://doi.org/10.1161/01.ATV.0000092127.16125.E6
Flaumenhaft R (2003) Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23:1152–1160
Weber C (2005) Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 96:612–616
Carestia A, Kaufman T, Schattner M (2016) Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 7:271
Merza M, Rahman M, Zhang S et al (2014) Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis. Am J Physiol Liver Physiol 307:G914–G921. https://doi.org/10.1152/ajpgi.00237.2014
Jenne CN, Wong CHY, Zemp FJ et al (2013) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13:169–180. https://doi.org/10.1016/j.chom.2013.01.005
Schaible HG, Ebersberger A, Segond Von Banchet G (2002) Mechanisms of pain in arthritis. Ann N Y Acad Sci
Attur M, Krasnokutsky S, Statnikov A et al (2015) Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheum. https://doi.org/10.1002/art.39279
Hair PS, Enos AI, Krishna NK, Cunnion KM (2018) Inhibition of immune complex complement activation and neutrophil extracellular trap formation by peptide inhibitor of complement C1. Front Immunol 9:558. https://doi.org/10.3389/fimmu.2018.00558
Botto M, Kirschfink M, Macor P et al (2009) Complement in human diseases: lessons from complement deficiencies. Mol Immunol
Klaska I, Nowak JZ (2007) The role of complement in physiology and pathology. Postepy Hig Med Dosw (Online) 61:167-77
Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524. https://doi.org/10.1046/j.1538-7836.2003.00306.x
Conway EM (2012) Thrombomodulin and its role in inflammation. Semin Immunopathol 34:107–125. https://doi.org/10.1007/s00281-011-0282-8
Fuentes-Prior P, Iwanaga Y, Huber R et al (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. https://doi.org/10.1038/35006683
Arnold DM, Kukaswadia S, Nazi I et al (2013) A systematic evaluation of laboratory testing for drug-induced immune thrombocytopenia. J Thromb Haemost. https://doi.org/10.1111/jth.12052
Sørensen OE, Borregaard N (2016) Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest 126:1612–1620
Griffin JH, Zlokovic BV, Mosnier LO (2015) Activated protein C: biased for translation. Blood 125:2898–2907. https://doi.org/10.1182/blood-2015-02-355974
Healy LD, Puy C, Fernández JA et al (2017) Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 292:8616–8629. https://doi.org/10.1074/jbc.M116.768309
Okajima K (2001) Regulation of inflammatory responses by natural anticoagulants. Immunol Rev 184:258–274. https://doi.org/10.1034/j.1600-065x.2001.1840123.x
Kalil AC, LaRosa SP (2012) Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: a meta-analysis and metaregression. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(12)70157-3
Acquisto NM (2014) Heparin. In: Encyclopedia of toxicology, third edn
Wardrop D, Keeling D (2008) The story of the discovery of heparin and warfarin. Br J Haematol 141:757–763. https://doi.org/10.1111/j.1365-2141.2008.07119.x
Tsung A, Tohme S, Billiar TR (2014) High-mobility group box-1 in sterile inflammation. J Intern Med 276:425–443. https://doi.org/10.1111/joim.12276
Tang D, Kang R, Zeh HJ, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14:1315–1335. https://doi.org/10.1089/ars.2010.3356
Malarkey CS, Churchill MEA (2012) The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 37:553–562. https://doi.org/10.1016/j.tibs.2012.09.003
Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342. https://doi.org/10.1038/nri1594
Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. https://doi.org/10.1074/jbc.M306793200
Mayansky AN, Mayansky NA (2009) Late-acting cytokine HMGBI: mediatory functions and prospects for clinical application. Immunologiya 4:232–237
Lee SA, Kwak MS, Kim S, Shin JS (2014) The role of high mobility group box 1 in innate immunity. Yonsei Med J 55:1165–1176. https://doi.org/10.3349/ymj.2014.55.5.1165
Matsuoka N, Itoh T, Watarai H et al (2010) High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest. https://doi.org/10.1172/JCI41360
Maugeri N, Campana L, Gavina M et al (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. https://doi.org/10.1111/jth.12710
de Agostini A, Lijnen HR, Pixley RA et al (1984) Inactivation of factor XII active fragment in normal plasma. Predominant role of C1-inhibitor. J Clin Invest 73:1542–1549. https://doi.org/10.1172/JCI111360
Schapira M, Scott CF, Colman RW (1982) Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma. J Clin Invest 69:462–468. https://doi.org/10.1172/JCI110470
Stelton CR, Connors DB, Walia SS, Walia HS (2013) Hydrochloroquine retinopathy: characteristic presentation with review of screening. Clin Rheumatol 32:895–898. https://doi.org/10.1007/s10067-013-2226-2
Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:155–166
Jang C-H, Choi J-H, Jue D-M (2006) Chloroquine inhibits production of TNF-a, IL-1b and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45:703–710. https://doi.org/10.1093/rheumatology/kei282
Belisario MA, Maturo M, Avagnale G et al (1996) In vitro effect of avarone and avarol, a quinone/hydroquinone couple of marine origin, on platelet aggregation. Pharmacol Toxicol 79:300–304. https://doi.org/10.1111/j.1600-0773.1996.tb00013.x
Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20:161–168
Lee JM, Kronbichler A, Park SJ et al (2019) Association between serum matrix metalloproteinase- (MMP-) 3 levels and systemic lupus erythematosus: a meta-analysis. Dis Markers 2019. https://doi.org/10.1155/2019/9796735
Lesiak A, Narbutt J, Sysa-Jedrzejowska A et al (2010) Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 19:683–688. https://doi.org/10.1177/0961203309356455
Wozniacka A, Lesiak A, Narbutt J et al (2006) Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus 15:268–275. https://doi.org/10.1191/0961203306lu2299oa
Qiao F, Pan P, Yan J et al (2019) Role of tumor-derived extracellular vesicles in cancer progression and their clinical applications (review). Int J Oncol 54:1525–1533. https://doi.org/10.3892/ijo.2019.4745
Leal AC, Mizurini DM, Gomes T et al (2017) Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep:7. https://doi.org/10.1038/s41598-017-06893-7
Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5:2502–2521. https://doi.org/10.3390/nu5072502
Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856.https://doi.org/10.1093/ajcn/69.5.842
Handono K, Sidarta YO, Pradana BA et al (2016) Vitamin D prevents endothelial damage induced by increased neutrophil extracellular traps formation in patients with systemic lupus erythematosus. Acta Med Indones 46:189–198
Bushra R, Aslam N (2010) An overview of clinical pharmacology of Ibuprofen. Oman Med J 25(3):155–1661. https://doi.org/10.5001/omj.2010.49
Funding
This publication was supported by funds from USDA NIFA, grant no. 2016-11003, awarded to Laurel Gershwin and UC Davis Comparative Medical Science Training Program (NIH grant no.: T32 OD011147).
Author information
Authors and Affiliations
Contributions
Victoria Mutua researched and wrote the review. Laurel Gershwin provided edits to the first draft and advice on the review composition.
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mutua, V., Gershwin, L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinic Rev Allerg Immunol 61, 194–211 (2021). https://doi.org/10.1007/s12016-020-08804-7
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s12016-020-08804-7


