Skip to main content
Log in

A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takei H, Araki A, Watanabe H et al (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59:229–240. https://doi.org/10.1002/jlb.59.2.229

    Article  CAS  PubMed  Google Scholar 

  2. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582. https://doi.org/10.1038/nrmicro1710

    Article  CAS  PubMed  Google Scholar 

  4. Urban C, Zychlinsky A (2007) Netting bacteria in sepsis. Nat Med 13:403–404

    Article  CAS  PubMed  Google Scholar 

  5. Scapini P, Cassatella MA (2014) Social networking of human neutrophils within the immune system. Blood 124:710–719

    Article  CAS  PubMed  Google Scholar 

  6. Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942

    Article  CAS  PubMed  Google Scholar 

  7. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(80):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  9. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691. https://doi.org/10.1083/jcb.201006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reeves EP, Lu H, Jacobs HL et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297. https://doi.org/10.1038/416291a

    Article  CAS  PubMed  Google Scholar 

  11. Smith CK, Vivekanandan-Giri A, Tang C et al (2014) Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheum 66:2532–2544. https://doi.org/10.1002/art.38703

    Article  CAS  Google Scholar 

  12. Parker H, Winterbourn CC (2013) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3:424. https://doi.org/10.3389/fimmu.2012.00424

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hawez A, Al-Haidari A, Madhi R et al (2019) MiR-155 regulates PAD4-dependent formation of neutrophil extracellular traps. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02462

  14. Lewis HD, Liddle J, Coote JE et al (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11:189–191. https://doi.org/10.1038/nchembio.1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Li M, Stadler S et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213. https://doi.org/10.1083/jcb.200806072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinod K, Demers M, Fuchs TA et al (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 110:8674–8679. https://doi.org/10.1073/pnas.1301059110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025. https://doi.org/10.1038/ni.2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petretto A, Bruschi M, Pratesi F et al (2019) Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis. PLoS One 14:e0218946. https://doi.org/10.1371/journal.pone.0218946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruschi M, Bonanni A, Petretto A et al (2020) Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47:377–386. https://doi.org/10.3899/jrheum.181232

    Article  CAS  PubMed  Google Scholar 

  21. Park J, Wysocki RW, Amoozgar Z et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8. https://doi.org/10.1126/scitranslmed.aag1711

  22. Liu D, Yang P, Gao M et al (2019) NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci 133:565–582. https://doi.org/10.1042/CS20180600

    Article  CAS  Google Scholar 

  23. Hirota T, Levy JH, Iba T (2020) The influence of hyperglycemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. Microcirculation. https://doi.org/10.1111/micc.12617

  24. Clark SR, Ma AC, Tavener SA et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469. https://doi.org/10.1038/nm1565

    Article  CAS  PubMed  Google Scholar 

  25. Vogel S, Bodenstein R, Chen Q et al (2015) Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 125:4638–4654. https://doi.org/10.1172/JCI81660

    Article  PubMed  PubMed Central  Google Scholar 

  26. Etulain J, Martinod K, Wong SL et al (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126:242–246. https://doi.org/10.1182/blood-2015-01-624023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schauer C, Janko C, Munoz LE et al (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20:511–517. https://doi.org/10.1038/nm.3547

    Article  CAS  PubMed  Google Scholar 

  28. Neumann A, Berends ETM, Nerlich A et al (2014) The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 464:3–11. https://doi.org/10.1042/BJ20140778

    Article  CAS  PubMed  Google Scholar 

  29. Burgener SS, Schroder K (2019) Neutrophil extracellular traps in host defense. https://doi.org/10.1101/cshperspect.a037028

  30. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L et al (2017) Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol 8:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Borchers AT, Chang C, Gershwin ME, Gershwin LJ (2013) Respiratory syncytial virus - a comprehensive review. Clin Rev Allergy Immunol 45:331–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saitoh T, Komano J, Saitoh Y et al (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:109–116. https://doi.org/10.1016/j.chom.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  33. Narasaraju T, Yang E, Samy RP et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210. https://doi.org/10.1016/j.ajpath.2011.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muraro SP, De Souza GF, Gallo SW et al (2018) Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-32576-y

    Article  CAS  Google Scholar 

  35. Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoeksema M, Tripathi S, White M et al (2015) Arginine-rich histones have strong antiviral activity for influenza a viruses. Innate Immun 21:736–745. https://doi.org/10.1177/1753425915593794

    Article  CAS  PubMed  Google Scholar 

  37. McCormick A, Heesemann L, Wagener J et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936. https://doi.org/10.1016/j.micinf.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  38. Amulic B, Knackstedt SL, Abu Abed U et al (2017) Cell-cycle proteins control production of neutrophil extracellular traps. Dev Cell 43:449–462.e5. https://doi.org/10.1016/j.devcel.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  39. Bruns S, Kniemeyer O, Hasenberg M et al (2010) Production of extracellular traps against aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin roda. PLoS Pathog 6:1–18. https://doi.org/10.1371/journal.ppat.1000873

    Article  CAS  Google Scholar 

  40. Carroll GM, Burns GL, Petit JA et al (2020) Does postoperative inflammation or sepsis generate neutrophil extracellular traps that influence colorectal cancer progression? A systematic review. Surg Open Sci. https://doi.org/10.1016/j.sopen.2019.12.005

  41. Baker VS, Imade GE, Molta NB et al (2008) Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J:7. https://doi.org/10.1186/1475-2875-7-41

  42. Abdallah DSA, Lin C, Ball CJ et al (2012) Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 80:768–777. https://doi.org/10.1128/IAI.05730-11

    Article  CAS  Google Scholar 

  43. Guimarães-Costa AB, Nascimento MTC, Froment GS et al (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106:6748–6753. https://doi.org/10.1073/pnas.0900226106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Díaz-Godínez C, Carrero JC (2019) The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep. https://doi.org/10.1042/BSR20180916

  45. Cools-Lartigue J, Spicer J, Najmeh S, Ferri L (2014) Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 71:4179–4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR (2017) Neutrophil extracellular trap production in patients with colorectal cancer in vitro. https://doi.org/10.1155/2017/4915062

  47. Snoderly HT, Boone BA, Bennewitz MF (2019) Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 21:1–13

    Article  CAS  Google Scholar 

  48. Alfaro C, Teijeira A, Oñate C et al (2016) Tumor-produced Interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 22:3924–3936. https://doi.org/10.1158/1078-0432.CCR-15-2463

    Article  CAS  PubMed  Google Scholar 

  49. Zhu L, Liu L, Zhang Y et al (2018) High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza a infection. J Infect Dis 217:428–437. https://doi.org/10.1093/infdis/jix475

    Article  CAS  PubMed  Google Scholar 

  50. Li RHL, Johnson LR, Kohen C, Tablin F (2018) A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluorescence microscopy. BMC Vet Res 14:1–7. https://doi.org/10.1186/s12917-018-1523-z

    Article  CAS  Google Scholar 

  51. Thålin C, Hisada Y, Lundström S et al (2019) Neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 39:1724–1738. https://doi.org/10.1161/ATVBAHA.119.312463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li RHL, Tablin F (2018) A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci 5:291

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ekaney ML, Otto GP, Sossdorf M et al (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18:543. https://doi.org/10.1186/s13054-014-0543-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487:318–322

    Article  CAS  PubMed  Google Scholar 

  55. Keshari RS, Jyoti A, Dubey M et al (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One:7. https://doi.org/10.1371/journal.pone.0048111

  56. Xu J, Zhang X, Pelayo R et al (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15:1318–1321. https://doi.org/10.1038/nm.2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abrams ST, Zhang N, Manson J et al (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187:160–169. https://doi.org/10.1164/rccm.201206-1037OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta S, Kaplan MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12:402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Glennon-Alty L, Hackett AP, Chapman EA, Wright HL (2018) Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 125:25–35. https://doi.org/10.1016/j.freeradbiomed.2018.03.049

    Article  CAS  PubMed  Google Scholar 

  60. Hoffmann JHO, Enk AH (2016) Neutrophil extracellular traps in dermatology: caught in the NET. J Dermatol Sci 84:3–10

    Article  CAS  PubMed  Google Scholar 

  61. Engler D, Chezuba HP, Masuku P (2017) Psoriasis. SA Pharm J 84:38–42

    Google Scholar 

  62. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873

    Article  CAS  PubMed  Google Scholar 

  63. Boehncke WH, Schön MP (2015) Psoriasis. Lancet 386:983–994

    Article  CAS  PubMed  Google Scholar 

  64. Pinegin B, Vorobjeva N, Pinegin V (2015) Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 14:633–640

    Article  CAS  PubMed  Google Scholar 

  65. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsh E et al (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32:117–124

    Article  CAS  PubMed  Google Scholar 

  66. Dörner T, Giesecke C, Lipsky PE (2011) Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 13. https://doi.org/10.1186/ar3433

  67. Lisnevskaia L, Murphy G, Isenberg D (2014) Systemic lupus erythematosus. In: The Lancet. Lancet Publishing Group, p 1878–1888. https://doi.org/10.1016/S0140-6736(14)60128-8

  68. Pan L, Lu MP, Wang JH et al (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30

    Article  PubMed  Google Scholar 

  69. Odqvist L, Jevnikar Z, Riise R et al (2019) Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis 78:1363–1370. https://doi.org/10.1136/annrheumdis-2019-215434

    Article  CAS  PubMed  Google Scholar 

  70. Chen W, Wang Q, Ke Y et al (2018) Review article neutrophil function in an inflammatory milieu of rheumatoid arthritis. https://doi.org/10.1155/2018/8549329

  71. Carmona-Rivera C, Carlucci PM, Moore E et al (2017) Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2. https://doi.org/10.1126/sciimmunol.aag3358

  72. Hidalgo AI, Carretta MD, Alarcón P et al (2019) Pro-inflammatory mediators and neutrophils are increased in synovial fluid from heifers with acute ruminal acidosis. BMC Vet Res 15:1–10. https://doi.org/10.1186/s12917-019-1974-x

    Article  Google Scholar 

  73. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5:178ra40. https://doi.org/10.1126/scitranslmed.3005580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Apel F, Zychlinsky A, Kenny EF (2018) The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol 14:467–475

    Article  CAS  PubMed  Google Scholar 

  75. Wigerblad G, Kaplan MJ (2020) NETs spread ever wider in rheumatic diseases. Nat Rev Rheumatol 16:73–74

    Article  CAS  PubMed  Google Scholar 

  76. Herold KC, Vignali DAA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berezin A (2019) Neutrophil extracellular traps: the core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 13:3017–3023

    Article  Google Scholar 

  78. Jennette JC, Falk RJ (1997) Small-vessel vasculitis. N Engl J Med 337:1512–1523. https://doi.org/10.1056/NEJM199711203372106

    Article  CAS  PubMed  Google Scholar 

  79. Hunder GG, Arend WP, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of vasculitis: introduction. Arthritis Rheum 33:1065–1067. https://doi.org/10.1002/art.1780330802

    Article  CAS  PubMed  Google Scholar 

  80. Goeser MR, Laniosz V, Wetter DA (2014) A practical approach to the diagnosis, evaluation, and management of cutaneous small-vessel vasculitis. Am J Clin Dermatol 15:299–306. https://doi.org/10.1007/s40257-014-0076-6

    Article  PubMed  Google Scholar 

  81. Nakazawa D, Tomaru U, Yamamoto C et al (2012) Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol 3. https://doi.org/10.3389/fimmu.2012.00333

  82. Nakazawa D, Shida H, Tomaru U et al (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25:990–997. https://doi.org/10.1681/ASN.2013060606

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mitroulis I, Kambas K, Chrysanthopoulou A et al (2011) Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One. https://doi.org/10.1371/journal.pone.0029318

  84. Lee KH, Kronbichler A, Park DDY et al (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16:1160–1173. https://doi.org/10.1016/j.autrev.2017.09.012

  85. Desai J, Steiger S, Anders HJ (2017) Molecular pathophysiology of gout. Trends Mol Med

  86. Chambers TJ, Morson BC (1979) The granuloma in Crohn’s disease. Gut 20:269–274. https://doi.org/10.1136/gut.20.4.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hedin CRH, Vavricka SR, Stagg AJ et al (2019) Gene and Mirna regulatory networks during different stages of Crohn’s disease. J Crohn's Colitis 13:541–554. https://doi.org/10.1093/ECCO-JCC

    Article  CAS  Google Scholar 

  88. Rogers BHG, Clark LM, Kirsner JB (1971) The epidemiologic and demographic characteristics of inflammatory bowel disease: an analysis of a computerized file of 1400 patients. J Chronic Dis 24:743–773. https://doi.org/10.1016/0021-9681(71)90087-7

    Article  CAS  PubMed  Google Scholar 

  89. Parkes G, Clare S, Goulding D et al (2006) Neutrophil activation and neutrophil extracellular trap formation in inflammatory bowel disease. Gastroenterology 130:A235

  90. Gottlieb Y, Elhasid R, Berger-Achituv S et al (2018) Neutrophil extracellular traps in pediatric inflammatory bowel disease. Pathol Int. https://doi.org/10.1111/pin.12715

  91. Dinallo V, Marafini I, Di Fusco D et al (2019) Neutrophil extracellulartraps sustain inflammatory signals in ulcerative colitis. J Crohn's Colitis. https://doi.org/10.1093/ecco-jcc/jjy215

  92. Wärnberg J, Marcos A (2008) Low-grade inflammation and the metabolic syndrome in children and adolescents. Curr Opin Lipidol 19:11–15

    Article  PubMed  CAS  Google Scholar 

  93. Castro AM, Macedo-de la Concha LE, Pantoja-Meléndez CA (2017) Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Médica del Hosp Gen México 80:101–105. https://doi.org/10.1016/j.hgmx.2016.06.011

    Article  Google Scholar 

  94. Wong SL, Demers M, Martinod K et al (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. https://doi.org/10.1038/nm.3887

  95. Frühbeck G (2004) The adipose tissue as a source of vasoactive factors. Curr Med Chem Cardiovasc Hematol Agents 2:197–208

    Article  PubMed  Google Scholar 

  96. Maurizi G, Della Guardia L, Maurizi A, Poloni A (2018) Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol 233:88–97. https://doi.org/10.1002/jcp.25855

    Article  CAS  PubMed  Google Scholar 

  97. Bonaventura A, Vecchié A, Abbate A, Montecucco F (2020) Neutrophil extracellular traps and cardiovascular diseases: an update. Cells 9:231. https://doi.org/10.3390/cells9010231

    Article  CAS  PubMed Central  Google Scholar 

  98. D’Abbondanza M, Martorelli EE, Ricci MA et al (2019) Increased plasmatic NETs by-products in patients in severe obesity. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-51220-x

    Article  CAS  Google Scholar 

  99. Narayana Moorthy A, Narasaraju T, Rai P et al (2013) In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 4:56. https://doi.org/10.3389/fimmu.2013.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moorthy AN, Tan KB, Wang S et al (2016) Effect of high-fat diet on the formation of pulmonary neutrophil extracellular traps during influenza pneumonia in BALB/c mice. Front Immunol 7:289. https://doi.org/10.3389/fimmu.2016.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tarantino E, Amadio P, Squellerio I et al (2016) Role of thromboxane-dependent platelet activation in venous thrombosis: aspirin effects in mouse model. Pharmacol Res 107:415–425. https://doi.org/10.1016/j.phrs.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  102. Caudrillier A, Kessenbrock K, Gilliss BM et al (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122:2661–2671. https://doi.org/10.1172/JCI61303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ortiz-Muñoz G, Mallavia B, Bins A et al (2014) Aspirin-triggered 15-epi-lipoxin a4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. https://doi.org/10.1182/blood-2014-03-562876

  104. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  CAS  PubMed  Google Scholar 

  105. Chen J, Shetty S, Zhang P et al (2014) Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2014.03.017

  106. Tilgner J, Von Trotha KT, Gombert A et al (2016) Aspirin, but NotTirofiban displays protective effects in endotoxin induced lung injury. PLoS One. https://doi.org/10.1371/journal.pone.0161218

  107. Sayah DM, Mallavia B, Liu F et al (2015) Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 191:455–463. https://doi.org/10.1164/rccm.201406-1086OC

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lapponi MJ, Carestia A, Landoni VI et al (2013) Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther 345:430–437. https://doi.org/10.1124/jpet.112.202879

    Article  CAS  PubMed  Google Scholar 

  109. Matsuda S, Koyasu S (2000) Mechanisms of action of cyclosporine. Immunopharmacology 47:119–125. https://doi.org/10.1016/S0162-3109(00)00192-2

  110. Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transp Secur. https://doi.org/10.1155/2012/230386

  111. Palmeiro BS (2013) Cyclosporine in veterinary dermatology. Vet Clin North Am Small Anim Pract (43), 153–171. https://doi.org/10.1016/j.cvsm.2012.09.007

  112. Liberman AC, Druker J, Refojo D, Arzt E (2008) Molecular mechanisms of action of some immunosuppressive drugs. Medicina 68:455–464

  113. Gupta AK, Giaglis S, Hasler P, Hahn S (2014) Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One:9. https://doi.org/10.1371/journal.pone.0097088

  114. Fric J, Zelante T, Wong AYW et al (2012) NFAT control of innate immunity. Blood 120:1380–1389. https://doi.org/10.1182/blood-2012-02-404475

  115. Jha V, Chugh KS (2002) Posttransplant infections in the tropical countries. Artif Organs. https://doi.org/10.1046/j.1525-1594.2002.07069.x

  116. Witalison EE, Cui X, Causey CP et al (2015) Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. https://doi.org/10.18632/oncotarget.5937

  117. Knight JS, Subramanian V, O’dell AA et alPeptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. https://doi.org/10.1136/annrheumdis-2014-205365

  118. Fadini GP, Menegazzo L, Rigato M et al (2016) NETosis delays diabetic wound healing in mice and humans. Diabetes. https://doi.org/10.2337/db15-0863

  119. Nakashima K, Arai S, Suzuki A et al (2013) PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression. Nat Commun. https://doi.org/10.1038/ncomms2862

  120. Stadler SC, Vincent CT, Fedorov VD et al (2013) Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelialto-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1308362110

  121. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science (80). https://doi.org/10.1126/science.aaa8064

  122. Ricciotti E, Fitzgerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.110.207449

  123. Gad SE (2014) Prostaglandins. In: Encyclopedia of toxicology, third edn

    Google Scholar 

  124. Shishikura K, Horiuchi T, Sakata N et al (2016) Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP. Br J Pharmacol 173:319–331. https://doi.org/10.1111/bph.13373

    Article  CAS  PubMed  Google Scholar 

  125. Domingo-Gonzalez R, Martínez-Colón GJ, Smith AJ et al (2016) Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin E2. Am J Respir Crit Care Med 193:186–197. https://doi.org/10.1164/rccm.201501-0161OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fabricius D, Neubauer M, Mandel B et al (2010) Prostaglandin E 2 inhibits IFN-α secretion and Th1 costimulation by human plasmacytoid dendritic cells via E-prostanoid 2 and E-prostanoid 4 receptor engagement. J Immunol. https://doi.org/10.4049/jimmunol.0902028

  127. Zipfel PF, Heinen S, Józsi M, Skerka C (2006) Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 43: 97–106. https://doi.org/10.1016/j.molimm.2005.06.015

  128. Java A, Atkinson J, Salmon J (2013) Defective complement inhibitory function predisposes to renal disease. Annu Rev Med. https://doi.org/10.1146/annurev-med-072211-110606

  129. de Bont CM, Boelens WC, Pruijn GJM (2019) NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16: 19–27. https://doi.org/10.1038/s41423-018-0024-0

  130. Hillmen P, Young NS, Schubert J et al (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. https://doi.org/10.1056/NEJMoa061648

  131. DeZern AE, Brodsky RA (2015) Paroxysmal nocturnal hemoglobinuria. A Complement-Mediated Hemolytic Anemia. Hematol Oncol Clin North Am 29:479–494.https://doi.org/10.1016/j.hoc.2015.01.005

  132. Tauber SC, Nau R (2008) Immunomodulatory properties of antibiotics. Curr Mol Pharmacol 1:68–79

  133. Manda-Handzlik A, Bystrzycka W, Sieczkowska S et al (2017) Antibiotics modulate the ability of neutrophils to release neutrophil extracellular traps. Adv Exp Med Biol 944:47–52. https://doi.org/10.1007/5584_2016_59

    Article  CAS  PubMed  Google Scholar 

  134. Bystrzycka W, Manda-Handzlik A, Sieczkowska S et al (2017) Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int J Mol Sci 18:2666. https://doi.org/10.3390/ijms18122666

    Article  CAS  PubMed Central  Google Scholar 

  135. Gando S (2010) Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med

  136. Licata G, Tuttolomondo A, Di Raimondo D et al (2009) Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb Haemost. https://doi.org/10.1160/TH08-06-0375

  137. Nguyen D, Coull BM (2017) Thrombosis. In: Primer on cerebrovascular diseases, second edn

    Google Scholar 

  138. Helms J, Clere-Jehl R, Bianchini E et al (2017) Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats. Ann Intensive Care 7:118. https://doi.org/10.1186/s13613-017-0340-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dahlbäck B, Villoutreix BO (2005) The anticoagulant protein C pathway. FEBS Lett. https://doi.org/10.1016/j.febslet.2005.03.001

  140. Howard BM, Cohen MJ (2016) Activated protein C. In: Trauma Induced Coagulopathy pp 91–114. https://doi.org/10.1007/978-3-319-28308-1

  141. Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109:3161–3172. https://doi.org/10.1182/blood-2006-09-003004

  142. Griffin JH, Fernández JA, Gale AJ, Mosnier LO (2007) Activated protein C. J Thromb Haemost 5:73–80. https://doi.org/10.1111/j.1538-7836.2007.02491.x.

  143. Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. https://doi.org/10.1056/NEJM200103083441001

  144. Vincent JL, Bernard GR, Beale R et al (2005) Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med. https://doi.org/10.1097/01.CCM.0000181729.46010.83

  145. Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development

  146. Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov

  147. Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis

  148. Iba T, Hashiguchi N, Nagaoka I et al (2015) Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med Exp 3:1–11. https://doi.org/10.1186/s40635-015-0072-z

    Article  Google Scholar 

  149. Wildhagen KCAAAA, De Frutos PG, Reutelingsperger CP et al (2014) Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 123:1098–1101. https://doi.org/10.1182/blood-2013-07-514984

    Article  CAS  PubMed  Google Scholar 

  150. Sanchez J (2017) Low molecular weight heparins—a new tool to disetangle from the NETs. Pharmacol Res 123:157

    Article  PubMed  Google Scholar 

  151. Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N (2017) Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res 123:146–156. https://doi.org/10.1016/j.phrs.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  152. Yang X, Wang H, Zhang M et al (2015) HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms. Diagn Pathol 10:134. https://doi.org/10.1186/s13000-015-0348-3

  153. Maugeri N, Franchini S, Campana L et al (2012) Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity. https://doi.org/10.3109/08916934.2012.719946

  154. Stark K, Philippi V, Stockhausen S et al (2016) Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. https://doi.org/10.1182/blood-2016-04-710632

  155. Jong SP, Gamboni-Robertson F, He Q et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Phys Cell Physiol. https://doi.org/10.1152/ajpcell.00401.2005

  156. Andrassy M, Volz HC, Igwe JC et al (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.108.769331

  157. Huang H, Tohme S, Al-Khafaji AB et al (2015) Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62:600–614. https://doi.org/10.1002/hep.27841

    Article  CAS  PubMed  Google Scholar 

  158. Ma YH, Ma TT, Wang C et al (2016) High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther. https://doi.org/10.1186/s13075-015-0903-z

  159. Tadie JM, Bae HB, Jiang S et al (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304:L342. https://doi.org/10.1152/ajplung.00151.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dyer MR, Chen Q, Haldeman S et al (2018) Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. https://doi.org/10.1038/s41598-018-20479-x

  161. Kang R, Zhang Q, Hou W et al (2014) Intracellular HMGB1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146:1097–1107.e8. https://doi.org/10.1053/j.gastro.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  162. Okuma Y, Liu K, Wake H et al (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. https://doi.org/10.1002/ana.23602

  163. Liu K, Mori S, Takahashi HK et al (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. https://doi.org/10.1096/fj.07-8770com

  164. Davis AE, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104:886-93. https://doi.org/10.1160/TH10-01-0073

  165. Bouillet L, Boccon-Gibod I, Gompel A et al (2017) Hereditary angioedema with normal C1 inhibitor: clinical characteristics and treatment response with plasma-derived human C1 inhibitor concentrate (Berinert®) in a french cohort. Eur J Dermatol https://www.ncbi.nlm.nih.gov/pubmed?term=28251901. Accessed 13 May 2020

  166. Zuraw BL, Bork K, Binkley KE et al (2012) Hereditary angioedema with normal C1 inhibitor function: consensus of an international expert panel. Allergy Asthma Proc 33 Suppl 1:S145-S156. https://doi.org/10.2500/aap.2012.33.3627

  167. Wygrecka M, Kosanovic D, Wujak L et al (2017) Antihistone properties of C1 esterase inhibitor protect against lung injury. Am J Respir Crit Care Med 196:186–199. https://doi.org/10.1164/rccm.201604-0712OC

    Article  CAS  PubMed  Google Scholar 

  168. Singer M, Jones AM (2010) Bench-to-bedside review: the role of C1-esterase inhibitor in sepsis and other critical illnesses. Crit Care 15:203

    Article  Google Scholar 

  169. Liu D, Cai S, Gu X et al (2003) C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. J Immunol. https://doi.org/10.4049/jimmunol.171.5.2594

  170. Lu F, Fernandes SM, Davis AE (2013) The effect of C1 inhibitor on myocardial ischemia and reperfusion injury. Cardiovasc Pathol. https://doi.org/10.1016/j.carpath.2012.05.003

  171. Caliezi C, Wuillemin WA, Zeerleder S et al (2000) C1-esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev 52:91–112

    CAS  PubMed  Google Scholar 

  172. Lefrançais E, Looney MR (2017) Neutralizing extracellular histones in acute respiratory distress syndrome. Am J Respir Crit Care Med 196:122–124

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585. https://doi.org/10.1007/s00125-017-4342-z

  174. Campbell JM (2019) Metformin. In: Encyclopedia of biomedical gerontology

    Google Scholar 

  175. Martin-Montalvo A, Mercken EM, Mitchell SJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun. https://doi.org/10.1038/ncomms3192

  176. Menegazzo L, Scattolini V, Cappellari R et al (2018) The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol 55:593–601. https://doi.org/10.1007/s00592-018-1129-8

    Article  CAS  PubMed  Google Scholar 

  177. Gallo A, Ceolotto G, Pinton P et al (2005) Metformin prevents glucose-induced protein kinase C-β2 activation in human umbilical vein endothelial cells through an antioxidant mechanism. Diabetes. https://doi.org/10.2337/diabetes.54.4.1123

  178. Batchuluun B, Inoguchi T, Sonoda N et al (2014) Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2013.10.025

  179. Keyaerts E, Vijgen L, Maes P et al (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2004.08.085

  180. Savarino A, Boelaert JR, Cassone A et al (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis Lancet Infect Dis 3:722–727. https://doi.org/10.1016/S1473-3099(03)00806-5

  181. Touret F, de Lamballerie X (2020) Of chloroquine and COVID-19. Antivir Res 177. https://doi.org/10.1016/j.antiviral.2020.104762

  182. Cortegiani A, Ingoglia G, Ippolito M et al (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. https://doi.org/10.1016/j.jcrc.2020.03.005

  183. Suarez-Almazor ME, Belseck E, Shea B et al (2000) Antimalarials for treating rheumatoid arthritis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd000959

  184. Amin M, Pushpakumar S, Muradashvili N et al (2016) Regulation and involvement of matrix metalloproteinases in vascular diseases. Front Biosci Landmark 21:89–118

    Article  CAS  Google Scholar 

  185. Vira H, Pradhan V, Umare V et al (2019) Role of polymorphisms in MMP-9 and TIMP-1 as biomarkers for susceptibility to systemic lupus erythematosus patients. Biomark Med 13:33–43. https://doi.org/10.2217/bmm-2018-0169

    Article  CAS  PubMed  Google Scholar 

  186. Murthy P, Singhi AD, Ross MA et al (2019) Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol:10. https://doi.org/10.3389/fimmu.2019.00028

  187. Boone BA, Murthy P, Miller-Ocuin J et al (2018) Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 18. https://doi.org/10.1186/s12885-018-4584-2

  188. Boone BA, Orlichenko L, Schapiro NE et al (2015) The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22:326–334. https://doi.org/10.1038/cgt.2015.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Riganti C, Gazzano E, Polimeni M et al (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem. https://doi.org/10.1074/jbc.M406314200

  190. Massart C, Giusti N, Beauwens R et al (2014) Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter. FEBS Open Bio. https://doi.org/10.1016/j.fob.2013.11.007

  191. Hasan RN, Schafer AI (2008) Hemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-κB. Circ Res. https://doi.org/10.1161/CIRCRESAHA.107.155143

  192. Ostafin M, Pruchniak MP, Ciepiela O et al (2016) Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation. Anal Biochem 509:60–66. https://doi.org/10.1016/j.ab.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  193. Hodgman MJ, Garrard AR (2012) A review of acetaminophen poisoning. Crit Care Clin 28:499–516. https://doi.org/10.1016/j.ccc.2012.07.006

  194. Dekhuijzen PN, van Beurden WJ (2006) The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis 1:99–106. https://doi.org/10.2147/copd.2006.1.2.99

  195. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. https://doi.org/10.1016/0891-5849(89)90066-X

  196. Aldini G, Altomare A, Baron G et al (2018) N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 52:751–762. https://doi.org/10.1080/10715762.2018.1468564

  197. Zawrotniak M, Kozik A, Rapala-Kozik M (2015) View of selected mucolytic, anti-inflammatory and cardiovascular drugs change the ability of neutrophils to form extracellular traps (NETs). https://doi.org/10.18388/abp.2015_1055

  198. Craver BM, Ramanathan G, Hoang S et al (2020) N-Acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. https://doi.org/10.1182/bloodadvances.2019000967

  199. Shak S, Capon DJ, Hellmiss R et al (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 87:9188–9192. https://doi.org/10.1073/pnas.87.23.9188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sharma P, Garg N, Sharma A et al (2019) Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 309:151354

    Article  CAS  PubMed  Google Scholar 

  201. Nishino T, Morikawa K (2002) Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 21:9022–9032

    Article  CAS  PubMed  Google Scholar 

  202. Ain QU, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205:120–127. https://doi.org/10.1016/j.jconrel.2014.12.036

  203. Macanovic M, Sinicropi D, Shak S et al (1996) The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol 106:243–252. https://doi.org/10.1046/j.1365-2249.1996.d01-839.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Meng W, Paunel-Görgülü A, Flohé S et al (2012) Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediat Inflamm. https://doi.org/10.1155/2012/149560

  205. Gray RD, McCullagh BN, McCray PB (2015) NETs and CF lung disease: current status and future prospects. Antibiotics 4:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mohanty T, Fisher J, Bakochi A et al (2019) Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 10. https://doi.org/10.1038/s41467-019-09040-0

  207. Albadawi H, Oklu R, Raacke Malley RE et al (2016) Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J Vasc Surg 64:484–493. https://doi.org/10.1016/j.jvs.2015.01.031

  208. Trejo-Becerril C, Pérez-Cardenas E, Gutiérrez-Díaz B et al (2016) Antitumor effects of systemic DNAse i and proteases in an in vivo model. Integr Cancer Ther. https://doi.org/10.1177/1534735416631102

  209. Kaplan JB, Lovetri K, Cardona ST et al (2012) Recombinant human DNase i decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo). https://doi.org/10.1038/ja.2011.113

  210. Saffarzadeh M, Juenemann C, Queisser MA et al (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7. https://doi.org/10.1371/journal.pone.0032366

  211. Jin T, Bokarewa M, Foster T et al (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176. https://doi.org/10.4049/jimmunol.172.2.1169

    Article  CAS  PubMed  Google Scholar 

  212. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342(80):863–866. https://doi.org/10.1126/science.1242255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ryu S, Song PI, Seo CH et al (2014) Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci. https://doi.org/10.3390/ijms15058753

  214. McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2013.06.012

  215. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174. https://doi.org/10.1159/000342079

  216. Soccol CR, de Souza Vandenberghe LP, Spier MR et al (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434

  217. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis. https://doi.org/10.1093/cid/civ085

  218. Vong L, Lorentz RJ, Assa A et al (2014) Probiotic lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol. https://doi.org/10.4049/jimmunol.1302286

  219. Liu PT, Stenger S, Li H et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science (80). https://doi.org/10.1126/science.1123933

  220. Harvey NC, Cantorna MT (2013) Vitamin D and the immune system. In: Diet, immunity and inflammation pp 244–263. https://doi.org/10.1533/9780857095749.2.244

  221. Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab 94:26–34. https://doi.org/10.1210/jc.2008-1454

  222. Hewison M (2012) An update on vitamin D and human immunity. Clin Endocrinol 76:315–325. https://doi.org/10.1111/j.1365-2265.2011.04261.x

  223. Fischer K (2019) Vitamin D. In: Principles of nutrigenetics and nutrigenomics: fundamentals of individualized nutrition pp 245–254. https://doi.org/10.1016/B978-0-12-804572-5.00032-X

  224. Brighton TA, Eikelboom JW, Mann K et al (2012) Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med 367:1979–1987. https://doi.org/10.1056/NEJMoa1210384

    Article  CAS  PubMed  Google Scholar 

  225. Wood AJJ, Patrono C (1994) Aspirin as an antiplatelet drug. N Engl J Med 330:1287–1294. https://doi.org/10.1056/NEJM199405053301808

    Article  Google Scholar 

  226. Catella-Lawson F, Reilly MP, Kapoor SC et al (2001) Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 345:1809–1817. https://doi.org/10.1056/NEJMoa003199

    Article  CAS  PubMed  Google Scholar 

  227. Léon C, Ravanat C, Freund M et al (2003) Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 23:1941–1947. https://doi.org/10.1161/01.ATV.0000092127.16125.E6

    Article  CAS  PubMed  Google Scholar 

  228. Flaumenhaft R (2003) Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23:1152–1160

    Article  CAS  PubMed  Google Scholar 

  229. Weber C (2005) Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 96:612–616

    Article  CAS  PubMed  Google Scholar 

  230. Carestia A, Kaufman T, Schattner M (2016) Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 7:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Merza M, Rahman M, Zhang S et al (2014) Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis. Am J Physiol Liver Physiol 307:G914–G921. https://doi.org/10.1152/ajpgi.00237.2014

    Article  CAS  Google Scholar 

  232. Jenne CN, Wong CHY, Zemp FJ et al (2013) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13:169–180. https://doi.org/10.1016/j.chom.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  233. Schaible HG, Ebersberger A, Segond Von Banchet G (2002) Mechanisms of pain in arthritis. Ann N Y Acad Sci

  234. Attur M, Krasnokutsky S, Statnikov A et al (2015) Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheum. https://doi.org/10.1002/art.39279

  235. Hair PS, Enos AI, Krishna NK, Cunnion KM (2018) Inhibition of immune complex complement activation and neutrophil extracellular trap formation by peptide inhibitor of complement C1. Front Immunol 9:558. https://doi.org/10.3389/fimmu.2018.00558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Botto M, Kirschfink M, Macor P et al (2009) Complement in human diseases: lessons from complement deficiencies. Mol Immunol

  237. Klaska I, Nowak JZ (2007) The role of complement in physiology and pathology. Postepy Hig Med Dosw (Online) 61:167-77

  238. Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524. https://doi.org/10.1046/j.1538-7836.2003.00306.x

  239. Conway EM (2012) Thrombomodulin and its role in inflammation. Semin Immunopathol 34:107–125. https://doi.org/10.1007/s00281-011-0282-8

  240. Fuentes-Prior P, Iwanaga Y, Huber R et al (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. https://doi.org/10.1038/35006683

  241. Arnold DM, Kukaswadia S, Nazi I et al (2013) A systematic evaluation of laboratory testing for drug-induced immune thrombocytopenia. J Thromb Haemost. https://doi.org/10.1111/jth.12052

  242. Sørensen OE, Borregaard N (2016) Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest 126:1612–1620

    Article  PubMed  PubMed Central  Google Scholar 

  243. Griffin JH, Zlokovic BV, Mosnier LO (2015) Activated protein C: biased for translation. Blood 125:2898–2907. https://doi.org/10.1182/blood-2015-02-355974

  244. Healy LD, Puy C, Fernández JA et al (2017) Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 292:8616–8629. https://doi.org/10.1074/jbc.M116.768309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Okajima K (2001) Regulation of inflammatory responses by natural anticoagulants. Immunol Rev 184:258–274. https://doi.org/10.1034/j.1600-065x.2001.1840123.x

  246. Kalil AC, LaRosa SP (2012) Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: a meta-analysis and metaregression. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(12)70157-3

  247. Acquisto NM (2014) Heparin. In: Encyclopedia of toxicology, third edn

    Google Scholar 

  248. Wardrop D, Keeling D (2008) The story of the discovery of heparin and warfarin. Br J Haematol 141:757–763. https://doi.org/10.1111/j.1365-2141.2008.07119.x

  249. Tsung A, Tohme S, Billiar TR (2014) High-mobility group box-1 in sterile inflammation. J Intern Med 276:425–443. https://doi.org/10.1111/joim.12276

  250. Tang D, Kang R, Zeh HJ, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14:1315–1335. https://doi.org/10.1089/ars.2010.3356

  251. Malarkey CS, Churchill MEA (2012) The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 37:553–562. https://doi.org/10.1016/j.tibs.2012.09.003

  252. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342. https://doi.org/10.1038/nri1594

  253. Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. https://doi.org/10.1074/jbc.M306793200

  254. Mayansky AN, Mayansky NA (2009) Late-acting cytokine HMGBI: mediatory functions and prospects for clinical application. Immunologiya 4:232–237

  255. Lee SA, Kwak MS, Kim S, Shin JS (2014) The role of high mobility group box 1 in innate immunity. Yonsei Med J 55:1165–1176. https://doi.org/10.3349/ymj.2014.55.5.1165

  256. Matsuoka N, Itoh T, Watarai H et al (2010) High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest. https://doi.org/10.1172/JCI41360

  257. Maugeri N, Campana L, Gavina M et al (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. https://doi.org/10.1111/jth.12710

  258. de Agostini A, Lijnen HR, Pixley RA et al (1984) Inactivation of factor XII active fragment in normal plasma. Predominant role of C1-inhibitor. J Clin Invest 73:1542–1549. https://doi.org/10.1172/JCI111360

    Article  PubMed  PubMed Central  Google Scholar 

  259. Schapira M, Scott CF, Colman RW (1982) Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma. J Clin Invest 69:462–468. https://doi.org/10.1172/JCI110470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Stelton CR, Connors DB, Walia SS, Walia HS (2013) Hydrochloroquine retinopathy: characteristic presentation with review of screening. Clin Rheumatol 32:895–898. https://doi.org/10.1007/s10067-013-2226-2

  261. Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:155–166

    Article  CAS  PubMed  Google Scholar 

  262. Jang C-H, Choi J-H, Jue D-M (2006) Chloroquine inhibits production of TNF-a, IL-1b and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45:703–710. https://doi.org/10.1093/rheumatology/kei282

    Article  CAS  PubMed  Google Scholar 

  263. Belisario MA, Maturo M, Avagnale G et al (1996) In vitro effect of avarone and avarol, a quinone/hydroquinone couple of marine origin, on platelet aggregation. Pharmacol Toxicol 79:300–304. https://doi.org/10.1111/j.1600-0773.1996.tb00013.x

    Article  CAS  PubMed  Google Scholar 

  264. Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lee JM, Kronbichler A, Park SJ et al (2019) Association between serum matrix metalloproteinase- (MMP-) 3 levels and systemic lupus erythematosus: a meta-analysis. Dis Markers 2019. https://doi.org/10.1155/2019/9796735

  266. Lesiak A, Narbutt J, Sysa-Jedrzejowska A et al (2010) Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 19:683–688. https://doi.org/10.1177/0961203309356455

    Article  CAS  PubMed  Google Scholar 

  267. Wozniacka A, Lesiak A, Narbutt J et al (2006) Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus 15:268–275. https://doi.org/10.1191/0961203306lu2299oa

    Article  CAS  PubMed  Google Scholar 

  268. Qiao F, Pan P, Yan J et al (2019) Role of tumor-derived extracellular vesicles in cancer progression and their clinical applications (review). Int J Oncol 54:1525–1533. https://doi.org/10.3892/ijo.2019.4745

    Article  CAS  PubMed  Google Scholar 

  269. Leal AC, Mizurini DM, Gomes T et al (2017) Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep:7. https://doi.org/10.1038/s41598-017-06893-7

  270. Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5:2502–2521. https://doi.org/10.3390/nu5072502

  271. Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856.https://doi.org/10.1093/ajcn/69.5.842

  272. Handono K, Sidarta YO, Pradana BA et al (2016) Vitamin D prevents endothelial damage induced by increased neutrophil extracellular traps formation in patients with systemic lupus erythematosus. Acta Med Indones 46:189–198

  273. Bushra R, Aslam N (2010) An overview of clinical pharmacology of Ibuprofen. Oman Med J 25(3):155–1661. https://doi.org/10.5001/omj.2010.49

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This publication was supported by funds from USDA NIFA, grant no. 2016-11003, awarded to Laurel Gershwin and UC Davis Comparative Medical Science Training Program (NIH grant no.: T32 OD011147).

Author information

Authors and Affiliations

Authors

Contributions

Victoria Mutua researched and wrote the review. Laurel Gershwin provided edits to the first draft and advice on the review composition.

Corresponding author

Correspondence to Victoria Mutua.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutua, V., Gershwin, L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinic Rev Allerg Immunol 61, 194–211 (2021). https://doi.org/10.1007/s12016-020-08804-7

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12016-020-08804-7

Keywords