Skip to main content
Log in

Proper Holomorphic Mappings among Bounded Symmetric Domains and Related Hartogs Domains

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The classical Alexander’s Theorem states that every proper holomorphic self-mapping of a complex unit ball of dimension at least 2 is an automorphism. Since then, the study of proper holomorphic mappings has become an important topic in several complex variables. Bounded symmetric domains, which include the complex unit balls, are among the most important domains in complex Euclidean spaces, due to the fact that they possess a lot of symmetries and are the universal covering spaces of various important mathematical objects. Henkin and Novikov proved that the analogue of Alexander’s Theorem is also true for irreducible bounded symmetric domains of higher rank. These rigidity results for proper holomorphic mappings among bounded symmetric domains have been, by the efforts of a lot of people, extended to the cases with positive co-dimension or rank difference. The purpose of this article is to give a survey for these developments. In addition, we also include a section discussing some generalizations to the Hartogs domains over irreducible bounded symmetric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, H., Byun, J., Park, J.: Automorphisms of the Hartogs type domains over classical symmetric domains. Internat. J. Math., 23(9), 1250098, 11 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ahn, H., Park, J.: The explicit forms and zeros of the Bergman kernel function for Hartogs type domains. J. Funct. Anal., 262(8), 3518–3547 (2012)

    Article  MathSciNet  Google Scholar 

  3. Alexander, H.: Proper holomorphic mappings in Cn. Indiana Univ. Math. J., 26, 137–146 (1977)

    Article  MathSciNet  Google Scholar 

  4. Andrews, J., Huang, X., Ji, S., et al.: Mapping from \(\mathbb{B}^n\) to \(\mathbb{B}^{3n-3}\). Comm. Anal. Geom., 24(2), 279–300 (2016)

    Article  MathSciNet  Google Scholar 

  5. Baouendi, M. S., Ebenfelt, P., Huang, X.: Holomorphic mappings between hyperquadrics with small signature difference. Amer. J. Math., 133(6), 1633–1661 (2011)

    Article  MathSciNet  Google Scholar 

  6. Baouendi, M. S., Huang, X.: Super-rigidity for holomorphic mappings between hyperquadrics with positive signature. J. Diff. Geom., 69(2), 379–398 (2005)

    MathSciNet  Google Scholar 

  7. Bi, E., Feng, Z., Su, G., et al.: Rawnsley’s ε-function on some Hartogs type domains over bounded symmetric domains and its applications. J. Geom. Phys., 135, 187–203 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bi, E., Tu, Z.: Remarks on the canonical metrics on the Cartan-Hartogs domains. C. R. Math. Acad. Sci. Paris, 355(7), 760–768 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pacific J. Math., 297(2), 277–297 (2018)

    Article  MathSciNet  Google Scholar 

  10. Brooks, J., Grundmeier, D., Schenck, H.: Algebraic properties of Hermitian sums of squares, II, Proc. Amer. Math. Soc., 150(8), 3471–3476 (2022)

    Article  MathSciNet  Google Scholar 

  11. Cao, H., Mok, N.: Holomorphic immersions between compact hyperbolic space forms. Invent. Math., 100, 49–61 (1990)

    Article  MathSciNet  Google Scholar 

  12. Chan, S. T.: Rigidity of proper holomorphic maps between Type-I irreducible bounded symmetric domains. Int. Math. Res. Not., 2022(11), 8209–8250 (2022)

    Article  MathSciNet  Google Scholar 

  13. Chern, S. S., Moser, J. K.: Real hypersurfaces in complex manifolds. Acta Math., 133, 219–271 (1974)

    Article  MathSciNet  Google Scholar 

  14. Cima, J., Suffridge, T. J.: A reflection principle with applications to proper holomorphic mappings. Math. Ann., 265, 489–500 (1983)

    Article  MathSciNet  Google Scholar 

  15. D’Angelo, J. P.: Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993

    Google Scholar 

  16. D’Angelo, J. P., Kos, S., Riehl, E.: A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4), 581–593 (2003)

    Article  MathSciNet  Google Scholar 

  17. D’Angelo, J. P., Lebl, J.: Complexity results for CR mappings between spheres. Internat. J. Math., 20(2), 149–166 (2009)

    Article  MathSciNet  Google Scholar 

  18. D’Angelo, J. P., Lebl, J.: On the complexity of proper mappings between balls. Complex Var. Elliptic Equ., 54(3), 187–204 (2009)

    Article  MathSciNet  Google Scholar 

  19. Dini, G., Primicerio, A.: Proper holomorphic mappings between generalized pseudoellipsoids. Ann. Mat. Pur. Appl., 158, 219–229 (1991)

    Article  MathSciNet  Google Scholar 

  20. Dini, G., Primicerio, A.: Localization principle of automorphisms on generalized pseudoellipsoids. J. Geom. Anal., 7(4), 575–584 (1997)

    Article  MathSciNet  Google Scholar 

  21. Ebenfelt, P.: Partial rigidity of degenerate CR embeddings into spheres. Adv. Math., 239, 72–96 (2013)

    Article  MathSciNet  Google Scholar 

  22. Faran, J.: Maps from the two ball to the three ball. Invent. Math., 68, 441–475 (1982)

    Article  MathSciNet  Google Scholar 

  23. Faran, J.: On the linearity of proper holomorphic maps between balls in the low codimensional case. J. Diff. Geom., 24, 15–17 (1986)

    MathSciNet  Google Scholar 

  24. Faran, J., Huang, X., Ji, S., et al.: Rational and polynomial maps between balls. Pure Appl. Math. Q., 6(3), 829–842 (2010)

    Article  MathSciNet  Google Scholar 

  25. Feng, Z., Tu, Z.: On canonical metrics on Cartan-Hartogs domains. Math. Z., 278, 301–320 (2014)

    Article  MathSciNet  Google Scholar 

  26. Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Glob. Anal. Geom., 47, 305–333 (2015)

    Article  MathSciNet  Google Scholar 

  27. Forstneric, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math., 95(1), 31–62 (1989)

    Article  MathSciNet  Google Scholar 

  28. Forstneric, F.: A survey on proper holomorphic mappings, In: Proceeding of Year in SCVs at Mittag-Leffler Institute, Math. Notes, 38, Princeton University Press, Princeton, NJ, 1992, 297–363

    Google Scholar 

  29. Gao, Y., Ng, S. C.: On rational proper mappings among generalized complex balls. Asian J. Math., 22(2), 355–380 (2018)

    Article  MathSciNet  Google Scholar 

  30. Gao, Y., Ng, S. C.: A hyperplane restriction theorem for holomorphic mappings and its application for the gap conjecture, Math. Ann., 388, 3169–3182 (2024)

    Article  MathSciNet  Google Scholar 

  31. Gao, Y., Ng, S. C.: On the rank of Hermitian polynomials and the SOS conjecture, Int. Math. Res. Not. IMRN, 13, 11276–11290 (2023)

    Article  MathSciNet  Google Scholar 

  32. Gul, N., Ji, S., Yin, W.: Three-jets determinations of normalized proper holomorphic maps from ℍn into ℍ3n−2, Complex Anal. Oper. Th., 18, Article Number 17 (2024)

  33. Grundmeier, D., Halfpap., K. J.: An application of Macaulay’s estimate to sums of squares problems in several complex variables, Proc. Amer. Math. Soc.. 143(4), 1411–1422 (2015)

    Article  MathSciNet  Google Scholar 

  34. Hakim, M., Sibony, N.: Fonctions holomorphes bornées sur la boule unité de Cn. Invent. Math., 67(2), 213–222 (1982)

    Article  MathSciNet  Google Scholar 

  35. Hamada, H.: On proper holomorphic self-maps of generalized complex ellipsoids. J. Geom. Anal., 8, 441–446 (1998)

    Article  MathSciNet  Google Scholar 

  36. Hamada, H.: Rational proper holomorphic maps from \(\mathbb{B}^n\) into \(\mathbb{B}^{2n}\). Math. Ann., 331(3), 693–711 (2005)

    Article  MathSciNet  Google Scholar 

  37. Henkin, G. M., Novikov, R.: Proper mappings of classical domains, In: Linear and Complex Analysis Problem Book, Lecture Notes in Math., Vol. 1043, Springer, Berlin, 1984, 625–627

    Google Scholar 

  38. Henkin, G. M., Tumanov, A. E.: Local characterization of analytic automorphisms of classical domains (Russian), Dokl. Akad. Nauk SSSR, 267, 1982, 796–799; English translation: Math. Note, Vol. 32, 1982, 849–852

    MathSciNet  Google Scholar 

  39. Huang, X.: On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Diff. Geom., 51, 13–33 (1999)

    MathSciNet  Google Scholar 

  40. Huang, X.: On a semi-rigidity property for holomorphic maps. Asian J. Math., 7(4), 463–492 (2003)

    Article  MathSciNet  Google Scholar 

  41. Huang, X., Ji, S.: Mapping \(\mathbb{B}^n\) into \(\mathbb{B}^{2n-1}\). Invent. Math., 145(2), 219–250 (2001)

    Article  MathSciNet  Google Scholar 

  42. Huang, X., Ji, S., Xu, D.: A new gap phenomenon for proper holomorphic mappings from \(\mathbb{B}^n\) to \(\mathbb{B}^N\). Math. Res. Lett., 3(4), 515–529 (2006)

    Article  Google Scholar 

  43. Huang, X., Ji, S., Xu, D.: Several results for holomorphic mappings from \(\mathbb{B}^n\) into \(\mathbb{B}^N\), In: Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005, 267–292

    Chapter  Google Scholar 

  44. Huang, X., Ji, S., Yin, W.: Recent progress on two problems in several complex variables, In: Proceedings of International Congress of Chinese Mathematicians 2007, Vol. I, International Press, 2009, 563–575

    Google Scholar 

  45. Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps between Balls. Math. Ann., 358(1–2), 115–142 (2014)

    Article  MathSciNet  Google Scholar 

  46. Huang, X., Lu, J., Tang, X., et al.: Proper mappings between indefinite hyperbolic spaces and type I classical domains. Trans. Amer. Math. Soc., 375(12), 8465–8481 (2022)

    Article  MathSciNet  Google Scholar 

  47. Hwang, J. M.: Geometry of varieties of minimal rational tangents, In: Current Developments in Algebraic Geometry, MSRI Publications, Vol. 59, Cambridge University Press, 2011, 197–226

    Google Scholar 

  48. Huang, X., Yin, W.: A Bishop surface with a vanishing Bishop invariant. Invent. Math., 176(3), 461–520 (2009)

    Article  MathSciNet  Google Scholar 

  49. Huang, X., Yin, W.: A codimension two CR singular submanifold that is formally equivalent to a symmetric quadric. Int. Math. Res. Notices, 15, 2789–2828 (2009)

    MathSciNet  Google Scholar 

  50. Huang, X., Yin, W.: Flattening of CR singular points and analyticity of local hull of holomorphy I. Math. Ann., 365(1–2), 381–399 (2016)

    Article  MathSciNet  Google Scholar 

  51. Huang, X., Yin, W.: Flattening of CR singular points and analyticity of local hull of holomorphy II, Adv. Math., 308, 1009–1073 (2017)

    Article  MathSciNet  Google Scholar 

  52. Ji, S., Yin, W.: D’Angelo conjecture in the third gap interval. Math. Z., 295(3–4), 1583–1595 (2020)

    Article  MathSciNet  Google Scholar 

  53. Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl., 409, 637–642 (2014)

    Article  MathSciNet  Google Scholar 

  54. Kim, S. Y., Mok, N., Seo, A.: Proper holomorphic maps between bounded symmetric domains with small rank differences. J. Differential Geom., 131, 551–631 (2025)

    Article  MathSciNet  Google Scholar 

  55. Kim, S. Y., Zaitsev, D.: Rigidity of proper holomorphic maps between bounded symmetric domains. Math. Ann., 362, 639–677 (2015)

    Article  MathSciNet  Google Scholar 

  56. Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ., 59, 1342–1349 (2014)

    Article  MathSciNet  Google Scholar 

  57. Kodama, A., Krantz, S. G., Ma, D.: A characterization of generalized complex ellipsoids in CN and related results. Indiana Univ. Math. J., 41, 173–195 (1992)

    Article  MathSciNet  Google Scholar 

  58. Kosiński, L.: The group of automorphisms of the pentablock. Complex Anal. Oper. Theory, 9(6), 1349–1359 (2015)

    Article  MathSciNet  Google Scholar 

  59. Lebl, J., Peters, H.: Polynomials constant on a hyperplane and CR maps of sphere. Illinois J. Math., 56(1), 155–175 (2012)

    Article  MathSciNet  Google Scholar 

  60. Landucci, M.: On the proper holomorphic equivalence for a class of pseudoconvex domains. Trans. Amer. Math. Soc., 282, 807–811 (1984)

    Article  MathSciNet  Google Scholar 

  61. Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z., 270, 1077–1087 (2012)

    Article  MathSciNet  Google Scholar 

  62. Low, E.: Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls. Math. Z., 190(3), 401–410 (1985)

    Article  MathSciNet  Google Scholar 

  63. Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathematics, Vol. 6, World Scientific, Singapore, 1989

    Book  Google Scholar 

  64. Mok, N.: Uniqueness theorems of Hermitian metric of seminegative curvature on quotients of bounded symmetric domains. Ann. Math., 125, 105–152 (1987)

    Article  MathSciNet  Google Scholar 

  65. Mok, N.: Uniqueness theorem of Kähler metrics of semipositive holomorphic bisectional curvature on compact Hermitian symmetric space. Math. Ann., 276, 177–204 (1987)

    Article  MathSciNet  Google Scholar 

  66. Mok, N.: geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents. In: Géométrie Différentielle, Physique Mathématique, Mathématiques et Société, Vol. 2, Astérisque 322, Soc. Math. de France, Paris, 2008, 151–205

    Google Scholar 

  67. Mok, N.: Nonexistence of proper holomorphic maps between certain classical bounded symmetric domains. Chin. Ann. Math. Ser. B., 29(2), 135–146 (2008)

    Article  MathSciNet  Google Scholar 

  68. Mok, N., Ng, S. C.: Germs of measure-preserving maps from bounded symmetric domains to their Cartesian products. J. Reine Angew. Math., 669, 47–72 (2012)

    MathSciNet  Google Scholar 

  69. Mok, N., Ng, S. C., Tu, Z.: Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank ≥ 2. Sci. China Math., 53(3), 813–826 (2010)

    Article  MathSciNet  Google Scholar 

  70. Mok, N., Tsai, I. H.: Rigidity of convex realizations of irreducible bounded symmetric domains of rank ≥ 2. J. Reine Angew. Math., 431, 91–122 (1992)

    MathSciNet  Google Scholar 

  71. Mostow, G.: Strong Rigidity of Locally Symmetric Spaces. Annals of Math Studies, Vol. 78, Princeton University Press, Princeton, NJ, 1973

    Google Scholar 

  72. Naruki, I.: The holomorphic equivalence problem for a class of Reinhardt domains. Publ. Res. Inst. Math. Sci., Kyoto Univ., 4, 527–543 (1968)

    Article  MathSciNet  Google Scholar 

  73. Ng, S. C.: On proper holomorphic mappings among irreducible bounded symmetric domains of rank at least 2. Proc. Amer. Math. Soc., 143, 219–225 (2015)

    Article  MathSciNet  Google Scholar 

  74. Ng, S. C.: Holomorphic double fibration and the mapping problems of classical domains. Int. Math. Res. Not., 2015(2), 291–324 (2015)

    Article  MathSciNet  Google Scholar 

  75. Ng, S. C.: Cycle spaces of flag domains on Grassmannians and rigidity of holomorphic mappings. Math. Res. Lett., 19(6), 1219–1236 (2012)

    Article  MathSciNet  Google Scholar 

  76. Ng, S. C.: Proper holomorphic mappings on flag domains of SU(p, q)-type on projective spaces. Michigan. Math. J., 62(4), 769–777 (2013)

    Article  MathSciNet  Google Scholar 

  77. Ng, S. C., Zhu, Y.: Rigidity of proper holomorphic maps among generalized balls with Levi-degenerate boundaries. J. Geom. Anal., 31(12), 11702–11713 (2021)

    Article  MathSciNet  Google Scholar 

  78. Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Ren. Cire. Mat. Palermo II, 23, 185–220 (1907)

    Article  Google Scholar 

  79. Remmert, R.: Projectionen analytischer Mengen. Math. Ann., 130, 410–441 (1956)

    Article  MathSciNet  Google Scholar 

  80. Remmert, R.: Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann., 133, 328–370 (1957)

    Article  MathSciNet  Google Scholar 

  81. Seo, A.: New examples of proper holomorphic maps among symmetric domains. Michigan Math. J., 64, 435–448 (2015)

    Article  MathSciNet  Google Scholar 

  82. Siu, Y. T.: The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. Math., 112, 73–111 (1980)

    Article  MathSciNet  Google Scholar 

  83. Siu, Y. T.: Strong rigidity of compact quotients of exceptional bounded symmetric domains. Duke Math. J., 48, 857–871 (1981)

    Article  MathSciNet  Google Scholar 

  84. Siu, Y. T.: Some Recent Results in Complex Manifold Theory Related to Vanishing Theorems for the Semipositive Case. In: Lecture Notes in Math., Vol. 1111, Springer, Berlin, 1985, 169–192

    Google Scholar 

  85. Stensones, B.: Proper maps which are Lipschitz a up to the boundary. J. Geom. Anal., 6(2), 317–339 (1996)

    Article  MathSciNet  Google Scholar 

  86. Su, G., Tu, Z., Wang, L.: Rigidity of proper holomorphic self-mappings of the pentablock. J. Math. Anal. Appl., 424, 460–469 (2015)

    Article  MathSciNet  Google Scholar 

  87. Tsai, I. H.: Rigidity of proper holomorphic maps between symmetric domains. J. Diff. Geom., 37, 123–160 (1993)

    MathSciNet  Google Scholar 

  88. Tu, Z.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Amer. Math. Soc., 130(4), 1035–1042 (2001)

    Article  MathSciNet  Google Scholar 

  89. Tu, Z.: Rigidity of proper holomorphic mappings between nonequidimensional bounded symmetric domains. Math. Z., 240, 13–35 (2002)

    Article  MathSciNet  Google Scholar 

  90. Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl., 419, 703–714 (2014)

    Article  MathSciNet  Google Scholar 

  91. Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann., 363(1–2), 1–34 (2015)

    Article  MathSciNet  Google Scholar 

  92. Tu, Z., Wang, L.: Classification of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Geom. Anal., 29(1), 378–391 (2019)

    Article  MathSciNet  Google Scholar 

  93. Wang, A., Yin, W. P., Zhang, L. Y., et al.: The Kähler-Einstein metric for some Hartogs domains over bounded symmetric domains. Sci. China Ser. A Math., 49(9), 1175–1210 (2006)

    Article  Google Scholar 

  94. Webster, S.: On mapping an n-ball into an (n + 1)-ball in the complex space. Pacific J. Math., 81, 267–272 (1979)

    Article  MathSciNet  Google Scholar 

  95. Wolf, J. A.: Fine Structure of Hermitian Symmetric Spaces. In: Geometry of Symmetric Spaces, Marcel-Dekker, New York, 1972, 271–357

    Google Scholar 

  96. Yin, W. K.: Divergent Birkhoff normal forms of real analytic area preserving maps. Math. Z., 280(3–4), 1005–1014 (2015)

    Article  MathSciNet  Google Scholar 

  97. Yin, W. P.: The Summarizations on Research of Hua Domain. Adv. Math. (China), 36(2), 129–152 (2007)

    MathSciNet  Google Scholar 

  98. Yin, W. P., Wang, A., Zhao, Z., et al.: The Bergman kernel functions on Hua domains. Sci. China Ser. A Math., 44(6), 727–741 (2001)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhan Tu.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Dedicated to Professor Zhihua Chen’s memory

S. C. Ng is supported in part by National Natural Science Foundation of China (Grant No. 12471078) and Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229014). Z. Tu is supported by the National Natural Science Foundation of China (Grant Nos. 12571089 and 12361131577). W. Yin is supported by the National Natural Science Foundation of China (Grant Nos. 12171372 and 12361131577). Z. Tu and W. Yin are supported by Hubei Provincial Innovation Group Project (Grant No. 2025AFA044)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, Sc., Tu, Z. & Yin, W. Proper Holomorphic Mappings among Bounded Symmetric Domains and Related Hartogs Domains. Acta. Math. Sin.-English Ser. (2025). https://doi.org/10.1007/s10114-025-3377-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10114-025-3377-1

Keywords

MR(2020) Subject Classification