Abstract
The classical Alexander’s Theorem states that every proper holomorphic self-mapping of a complex unit ball of dimension at least 2 is an automorphism. Since then, the study of proper holomorphic mappings has become an important topic in several complex variables. Bounded symmetric domains, which include the complex unit balls, are among the most important domains in complex Euclidean spaces, due to the fact that they possess a lot of symmetries and are the universal covering spaces of various important mathematical objects. Henkin and Novikov proved that the analogue of Alexander’s Theorem is also true for irreducible bounded symmetric domains of higher rank. These rigidity results for proper holomorphic mappings among bounded symmetric domains have been, by the efforts of a lot of people, extended to the cases with positive co-dimension or rank difference. The purpose of this article is to give a survey for these developments. In addition, we also include a section discussing some generalizations to the Hartogs domains over irreducible bounded symmetric domains.
Similar content being viewed by others
References
Ahn, H., Byun, J., Park, J.: Automorphisms of the Hartogs type domains over classical symmetric domains. Internat. J. Math., 23(9), 1250098, 11 (2012)
Ahn, H., Park, J.: The explicit forms and zeros of the Bergman kernel function for Hartogs type domains. J. Funct. Anal., 262(8), 3518–3547 (2012)
Alexander, H.: Proper holomorphic mappings in Cn. Indiana Univ. Math. J., 26, 137–146 (1977)
Andrews, J., Huang, X., Ji, S., et al.: Mapping from \(\mathbb{B}^n\) to \(\mathbb{B}^{3n-3}\). Comm. Anal. Geom., 24(2), 279–300 (2016)
Baouendi, M. S., Ebenfelt, P., Huang, X.: Holomorphic mappings between hyperquadrics with small signature difference. Amer. J. Math., 133(6), 1633–1661 (2011)
Baouendi, M. S., Huang, X.: Super-rigidity for holomorphic mappings between hyperquadrics with positive signature. J. Diff. Geom., 69(2), 379–398 (2005)
Bi, E., Feng, Z., Su, G., et al.: Rawnsley’s ε-function on some Hartogs type domains over bounded symmetric domains and its applications. J. Geom. Phys., 135, 187–203 (2019)
Bi, E., Tu, Z.: Remarks on the canonical metrics on the Cartan-Hartogs domains. C. R. Math. Acad. Sci. Paris, 355(7), 760–768 (2017)
Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pacific J. Math., 297(2), 277–297 (2018)
Brooks, J., Grundmeier, D., Schenck, H.: Algebraic properties of Hermitian sums of squares, II, Proc. Amer. Math. Soc., 150(8), 3471–3476 (2022)
Cao, H., Mok, N.: Holomorphic immersions between compact hyperbolic space forms. Invent. Math., 100, 49–61 (1990)
Chan, S. T.: Rigidity of proper holomorphic maps between Type-I irreducible bounded symmetric domains. Int. Math. Res. Not., 2022(11), 8209–8250 (2022)
Chern, S. S., Moser, J. K.: Real hypersurfaces in complex manifolds. Acta Math., 133, 219–271 (1974)
Cima, J., Suffridge, T. J.: A reflection principle with applications to proper holomorphic mappings. Math. Ann., 265, 489–500 (1983)
D’Angelo, J. P.: Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993
D’Angelo, J. P., Kos, S., Riehl, E.: A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4), 581–593 (2003)
D’Angelo, J. P., Lebl, J.: Complexity results for CR mappings between spheres. Internat. J. Math., 20(2), 149–166 (2009)
D’Angelo, J. P., Lebl, J.: On the complexity of proper mappings between balls. Complex Var. Elliptic Equ., 54(3), 187–204 (2009)
Dini, G., Primicerio, A.: Proper holomorphic mappings between generalized pseudoellipsoids. Ann. Mat. Pur. Appl., 158, 219–229 (1991)
Dini, G., Primicerio, A.: Localization principle of automorphisms on generalized pseudoellipsoids. J. Geom. Anal., 7(4), 575–584 (1997)
Ebenfelt, P.: Partial rigidity of degenerate CR embeddings into spheres. Adv. Math., 239, 72–96 (2013)
Faran, J.: Maps from the two ball to the three ball. Invent. Math., 68, 441–475 (1982)
Faran, J.: On the linearity of proper holomorphic maps between balls in the low codimensional case. J. Diff. Geom., 24, 15–17 (1986)
Faran, J., Huang, X., Ji, S., et al.: Rational and polynomial maps between balls. Pure Appl. Math. Q., 6(3), 829–842 (2010)
Feng, Z., Tu, Z.: On canonical metrics on Cartan-Hartogs domains. Math. Z., 278, 301–320 (2014)
Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Glob. Anal. Geom., 47, 305–333 (2015)
Forstneric, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math., 95(1), 31–62 (1989)
Forstneric, F.: A survey on proper holomorphic mappings, In: Proceeding of Year in SCVs at Mittag-Leffler Institute, Math. Notes, 38, Princeton University Press, Princeton, NJ, 1992, 297–363
Gao, Y., Ng, S. C.: On rational proper mappings among generalized complex balls. Asian J. Math., 22(2), 355–380 (2018)
Gao, Y., Ng, S. C.: A hyperplane restriction theorem for holomorphic mappings and its application for the gap conjecture, Math. Ann., 388, 3169–3182 (2024)
Gao, Y., Ng, S. C.: On the rank of Hermitian polynomials and the SOS conjecture, Int. Math. Res. Not. IMRN, 13, 11276–11290 (2023)
Gul, N., Ji, S., Yin, W.: Three-jets determinations of normalized proper holomorphic maps from ℍn into ℍ3n−2, Complex Anal. Oper. Th., 18, Article Number 17 (2024)
Grundmeier, D., Halfpap., K. J.: An application of Macaulay’s estimate to sums of squares problems in several complex variables, Proc. Amer. Math. Soc.. 143(4), 1411–1422 (2015)
Hakim, M., Sibony, N.: Fonctions holomorphes bornées sur la boule unité de Cn. Invent. Math., 67(2), 213–222 (1982)
Hamada, H.: On proper holomorphic self-maps of generalized complex ellipsoids. J. Geom. Anal., 8, 441–446 (1998)
Hamada, H.: Rational proper holomorphic maps from \(\mathbb{B}^n\) into \(\mathbb{B}^{2n}\). Math. Ann., 331(3), 693–711 (2005)
Henkin, G. M., Novikov, R.: Proper mappings of classical domains, In: Linear and Complex Analysis Problem Book, Lecture Notes in Math., Vol. 1043, Springer, Berlin, 1984, 625–627
Henkin, G. M., Tumanov, A. E.: Local characterization of analytic automorphisms of classical domains (Russian), Dokl. Akad. Nauk SSSR, 267, 1982, 796–799; English translation: Math. Note, Vol. 32, 1982, 849–852
Huang, X.: On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Diff. Geom., 51, 13–33 (1999)
Huang, X.: On a semi-rigidity property for holomorphic maps. Asian J. Math., 7(4), 463–492 (2003)
Huang, X., Ji, S.: Mapping \(\mathbb{B}^n\) into \(\mathbb{B}^{2n-1}\). Invent. Math., 145(2), 219–250 (2001)
Huang, X., Ji, S., Xu, D.: A new gap phenomenon for proper holomorphic mappings from \(\mathbb{B}^n\) to \(\mathbb{B}^N\). Math. Res. Lett., 3(4), 515–529 (2006)
Huang, X., Ji, S., Xu, D.: Several results for holomorphic mappings from \(\mathbb{B}^n\) into \(\mathbb{B}^N\), In: Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005, 267–292
Huang, X., Ji, S., Yin, W.: Recent progress on two problems in several complex variables, In: Proceedings of International Congress of Chinese Mathematicians 2007, Vol. I, International Press, 2009, 563–575
Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps between Balls. Math. Ann., 358(1–2), 115–142 (2014)
Huang, X., Lu, J., Tang, X., et al.: Proper mappings between indefinite hyperbolic spaces and type I classical domains. Trans. Amer. Math. Soc., 375(12), 8465–8481 (2022)
Hwang, J. M.: Geometry of varieties of minimal rational tangents, In: Current Developments in Algebraic Geometry, MSRI Publications, Vol. 59, Cambridge University Press, 2011, 197–226
Huang, X., Yin, W.: A Bishop surface with a vanishing Bishop invariant. Invent. Math., 176(3), 461–520 (2009)
Huang, X., Yin, W.: A codimension two CR singular submanifold that is formally equivalent to a symmetric quadric. Int. Math. Res. Notices, 15, 2789–2828 (2009)
Huang, X., Yin, W.: Flattening of CR singular points and analyticity of local hull of holomorphy I. Math. Ann., 365(1–2), 381–399 (2016)
Huang, X., Yin, W.: Flattening of CR singular points and analyticity of local hull of holomorphy II, Adv. Math., 308, 1009–1073 (2017)
Ji, S., Yin, W.: D’Angelo conjecture in the third gap interval. Math. Z., 295(3–4), 1583–1595 (2020)
Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl., 409, 637–642 (2014)
Kim, S. Y., Mok, N., Seo, A.: Proper holomorphic maps between bounded symmetric domains with small rank differences. J. Differential Geom., 131, 551–631 (2025)
Kim, S. Y., Zaitsev, D.: Rigidity of proper holomorphic maps between bounded symmetric domains. Math. Ann., 362, 639–677 (2015)
Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ., 59, 1342–1349 (2014)
Kodama, A., Krantz, S. G., Ma, D.: A characterization of generalized complex ellipsoids in CN and related results. Indiana Univ. Math. J., 41, 173–195 (1992)
Kosiński, L.: The group of automorphisms of the pentablock. Complex Anal. Oper. Theory, 9(6), 1349–1359 (2015)
Lebl, J., Peters, H.: Polynomials constant on a hyperplane and CR maps of sphere. Illinois J. Math., 56(1), 155–175 (2012)
Landucci, M.: On the proper holomorphic equivalence for a class of pseudoconvex domains. Trans. Amer. Math. Soc., 282, 807–811 (1984)
Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z., 270, 1077–1087 (2012)
Low, E.: Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls. Math. Z., 190(3), 401–410 (1985)
Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathematics, Vol. 6, World Scientific, Singapore, 1989
Mok, N.: Uniqueness theorems of Hermitian metric of seminegative curvature on quotients of bounded symmetric domains. Ann. Math., 125, 105–152 (1987)
Mok, N.: Uniqueness theorem of Kähler metrics of semipositive holomorphic bisectional curvature on compact Hermitian symmetric space. Math. Ann., 276, 177–204 (1987)
Mok, N.: geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents. In: Géométrie Différentielle, Physique Mathématique, Mathématiques et Société, Vol. 2, Astérisque 322, Soc. Math. de France, Paris, 2008, 151–205
Mok, N.: Nonexistence of proper holomorphic maps between certain classical bounded symmetric domains. Chin. Ann. Math. Ser. B., 29(2), 135–146 (2008)
Mok, N., Ng, S. C.: Germs of measure-preserving maps from bounded symmetric domains to their Cartesian products. J. Reine Angew. Math., 669, 47–72 (2012)
Mok, N., Ng, S. C., Tu, Z.: Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank ≥ 2. Sci. China Math., 53(3), 813–826 (2010)
Mok, N., Tsai, I. H.: Rigidity of convex realizations of irreducible bounded symmetric domains of rank ≥ 2. J. Reine Angew. Math., 431, 91–122 (1992)
Mostow, G.: Strong Rigidity of Locally Symmetric Spaces. Annals of Math Studies, Vol. 78, Princeton University Press, Princeton, NJ, 1973
Naruki, I.: The holomorphic equivalence problem for a class of Reinhardt domains. Publ. Res. Inst. Math. Sci., Kyoto Univ., 4, 527–543 (1968)
Ng, S. C.: On proper holomorphic mappings among irreducible bounded symmetric domains of rank at least 2. Proc. Amer. Math. Soc., 143, 219–225 (2015)
Ng, S. C.: Holomorphic double fibration and the mapping problems of classical domains. Int. Math. Res. Not., 2015(2), 291–324 (2015)
Ng, S. C.: Cycle spaces of flag domains on Grassmannians and rigidity of holomorphic mappings. Math. Res. Lett., 19(6), 1219–1236 (2012)
Ng, S. C.: Proper holomorphic mappings on flag domains of SU(p, q)-type on projective spaces. Michigan. Math. J., 62(4), 769–777 (2013)
Ng, S. C., Zhu, Y.: Rigidity of proper holomorphic maps among generalized balls with Levi-degenerate boundaries. J. Geom. Anal., 31(12), 11702–11713 (2021)
Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Ren. Cire. Mat. Palermo II, 23, 185–220 (1907)
Remmert, R.: Projectionen analytischer Mengen. Math. Ann., 130, 410–441 (1956)
Remmert, R.: Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann., 133, 328–370 (1957)
Seo, A.: New examples of proper holomorphic maps among symmetric domains. Michigan Math. J., 64, 435–448 (2015)
Siu, Y. T.: The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. Math., 112, 73–111 (1980)
Siu, Y. T.: Strong rigidity of compact quotients of exceptional bounded symmetric domains. Duke Math. J., 48, 857–871 (1981)
Siu, Y. T.: Some Recent Results in Complex Manifold Theory Related to Vanishing Theorems for the Semipositive Case. In: Lecture Notes in Math., Vol. 1111, Springer, Berlin, 1985, 169–192
Stensones, B.: Proper maps which are Lipschitz a up to the boundary. J. Geom. Anal., 6(2), 317–339 (1996)
Su, G., Tu, Z., Wang, L.: Rigidity of proper holomorphic self-mappings of the pentablock. J. Math. Anal. Appl., 424, 460–469 (2015)
Tsai, I. H.: Rigidity of proper holomorphic maps between symmetric domains. J. Diff. Geom., 37, 123–160 (1993)
Tu, Z.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Amer. Math. Soc., 130(4), 1035–1042 (2001)
Tu, Z.: Rigidity of proper holomorphic mappings between nonequidimensional bounded symmetric domains. Math. Z., 240, 13–35 (2002)
Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl., 419, 703–714 (2014)
Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann., 363(1–2), 1–34 (2015)
Tu, Z., Wang, L.: Classification of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Geom. Anal., 29(1), 378–391 (2019)
Wang, A., Yin, W. P., Zhang, L. Y., et al.: The Kähler-Einstein metric for some Hartogs domains over bounded symmetric domains. Sci. China Ser. A Math., 49(9), 1175–1210 (2006)
Webster, S.: On mapping an n-ball into an (n + 1)-ball in the complex space. Pacific J. Math., 81, 267–272 (1979)
Wolf, J. A.: Fine Structure of Hermitian Symmetric Spaces. In: Geometry of Symmetric Spaces, Marcel-Dekker, New York, 1972, 271–357
Yin, W. K.: Divergent Birkhoff normal forms of real analytic area preserving maps. Math. Z., 280(3–4), 1005–1014 (2015)
Yin, W. P.: The Summarizations on Research of Hua Domain. Adv. Math. (China), 36(2), 129–152 (2007)
Yin, W. P., Wang, A., Zhao, Z., et al.: The Bergman kernel functions on Hua domains. Sci. China Ser. A Math., 44(6), 727–741 (2001)
Acknowledgements
We thank the referees for very helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest The authors declare no conflict of interest.
Additional information
Dedicated to Professor Zhihua Chen’s memory
S. C. Ng is supported in part by National Natural Science Foundation of China (Grant No. 12471078) and Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229014). Z. Tu is supported by the National Natural Science Foundation of China (Grant Nos. 12571089 and 12361131577). W. Yin is supported by the National Natural Science Foundation of China (Grant Nos. 12171372 and 12361131577). Z. Tu and W. Yin are supported by Hubei Provincial Innovation Group Project (Grant No. 2025AFA044)
Rights and permissions
About this article
Cite this article
Ng, Sc., Tu, Z. & Yin, W. Proper Holomorphic Mappings among Bounded Symmetric Domains and Related Hartogs Domains. Acta. Math. Sin.-English Ser. (2025). https://doi.org/10.1007/s10114-025-3377-1
Received:
Revised:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s10114-025-3377-1
