Skip to main content
Log in

The Kähler-Einstein metric for some Hartogs domains over symmetric domains

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We study the complete Kähler-Einstein metric of a Hartogs domain \(\tilde \Omega \) built on an irreducible bounded symmetric domain sW, using a power N µ of the generic norm of Ω. The generating function of the Kähler-Einstein metric satisfies a complex Monge-Ampère equation with a boundary condition. The domain \(\tilde \Omega \) is in general not homogeneous, but it has a subgroup of automorphisms, the orbits of which are parameterized by X ε [0, 1[. This allows us to reduce the Monge-Ampère equation to an ordinary differential equation with a limit condition. This equation can be explicitly solved for a special value µ0 of µ. We work out the details for the two exceptional symmetric domains. The special value µ0 seems also to be significant for the properties of other invariant metrics like the Bergman metric; a conjecture is stated, which is proved for the exceptional domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng S Y, Yau S T. On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Comm Pure Appl Math, 1980, 33: 507–544

    MathSciNet  MATH  Google Scholar 

  2. Mok N, Yau S T. Completeness of the Kähler-Einstein metric on bounded domain and the characterization of domain of holomorphy by curvature conditions. Proc Symposia Pure Math, 1983, 39: 41–59

    MathSciNet  Google Scholar 

  3. Wu H. Old and new invariants metrics on complex manifolds. In: Fornaess J E, eds. Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987–1988, Math Notes, Vol 38. Princeton: Princeton Univ Press, 1993, 640–682

    Google Scholar 

  4. Yin W P, Lu K P, Roos Guy. New classes of domains with explicit Bergman kernel. Sci China, Ser A, 2004, 47: 352–371

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang A, Yin W P, Zhang L Y, et al. The Einstein-Kähler metric with explicit formula on nonhomogeneous domain. Asian J Math, 2004, 8: 39–50

    MathSciNet  Google Scholar 

  6. Cartan H. Les fonctions de deux variables complexes et le problème de la représentation analytique. J Math Pures Appl, 1931, 10: 1–114

    MathSciNet  Google Scholar 

  7. Loos Ottmar. Bounded Symmetric Domains and Jordan Pairs. Math Lectures, Univ of California, Irvine, 1977

    Google Scholar 

  8. Faraut J, Kaneyuki S, Korányi A, et al. Analysis and geometry on complex homogeneous domains. In: Progress in Mathematics. Boston: Birkhäuser, 1999, 425–534

    Google Scholar 

  9. Yin W P, Wang A, Zhao X X. Comparison theorem on Cartan-Hartogs domain of the first type. Sci China, Ser A, 2001, 44(5): 587–598

    Article  MathSciNet  MATH  Google Scholar 

  10. Hua L K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Providence: American Mathematical Society, 1963

    Google Scholar 

  11. Loos O, Jordan P. Lecture Notes in Mathematics, Vol 460. Berlin-Heidelberg-New York: Springer-Verlag, 1975

    Google Scholar 

  12. Roos G, Vigué J P. Systèmes triples de Jordan et domaines symétriques. Hermann, Paris, Travaux en cours, 1992, 43: 1–84

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Yin, W., Zhang, L. et al. The Kähler-Einstein metric for some Hartogs domains over symmetric domains. SCI CHINA SER A 49, 1175–1210 (2006). https://doi.org/10.1007/s11425-006-0230-6

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11425-006-0230-6

Keywords