Abstract
Mitochondria exist as dynamic networks that often change shape and subcellular distribution. The number and morphology of mitochondria within a cell are controlled by precisely regulated rates of organelle fusion and fission. Recent reports have described dramatic alterations in mitochondrial morphology during the early stages of apoptotic cell death, a fragmentation of the network and the remodeling of the cristae. Surprisingly, proteins discovered to control mitochondrial morphology appear to also participate in apoptosis and proteins associated with the regulation of apoptosis have been shown to affect mitochondrial ultrastructure. In this review the recent progress in understanding the mechanisms governing mitochondrial morphology and the latest advances connecting the regulation of mitochondrial morphology with programmed cell death are discussed.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- AKAP:
-
A kinase anchoring protein
- Bif1:
-
Bax-interacting factor 1
- COX:
-
cytochrome c oxidase
- OPA1:
-
dominant optic atrophy-associated protein
- Drp1:
-
dynamin-related protein 1
- FRAP:
-
fluorescence recovery after photobleaching
- mito-GFP:
-
green fluorescent protein targeted to the mitochondrial matrix
- IMM:
-
inner mitochondrial membrane
- Mdm:
-
mitochondrial distribution and maintenance
- mtDNA:
-
mitochondrial DNA
- ÎΨm:
-
mitochondrial membrane potential
- Mmm:
-
mitochondrial morphology maintenance
- Mfn1&2:
-
mitofusins 1&2
- MEFs:
-
mouse embryonic fibroblasts
- OMM:
-
outer mitochondrial membrane
- PTP:
-
permeability transition pore
- STS:
-
staurosporine
- vMIA:
-
viral mitochondrion-localized inhibitor of apoptosis
- VDAC:
-
voltage-dependent anion-selective channel
References
Bereiter-Hahn J and Voth M (1994) Dynamics of mitochondria in living cells, shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27: 198â219
Chen LB (1988) Mitochondrial membrane potential in living cells. Annu. Rev. Cell. Biol. 4: 155â181
Rizzuto R, Simpson AW, Brini M and Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358: 325â327
Frey TG and Mannella CA (2000) The internal structure of mitochondria. Trends Biochem. Sci. 25: 319â324
Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763â1766
De Giorgi F, Lartigue L and Ichas F (2000) Electrical coupling and plasticity of the mitochondrial network. Cell Calcium 28: 365â370
Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26: 23â29
Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I and Hayashi JI (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7: 934â940
Egner A, Jakobs S and Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99: 3370â3375
Hoffmann HP and Avers CJ (1973) Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell. Science 181: 749â751
Nunnari J, Marshall W, Straight A, Murray A, Sedat J and Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell. 8: 1233â1242
Collins TJ, Berridge MJ, Lipp P and Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21: 1616â1627
Park MK, Ashby MC, Erdemli G, Petersen OH and Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 20: 1863â1874
Gilkerson RW, Margineantu DH, Capaldi RA and Selker JML (2000) Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS Lett. 474: 1â4
Legros F, Lombes A, Frachon P and Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell. 13: 4343â4354
Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J and Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell. Biol. 1: 298â304
Sesaki H and Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell. Biol. 147: 699â706
Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283: 1493â1497
Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W and Westermann B . (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell., 13: 847â853
Sogo LF and Yaffe MP (1994) Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell. Biol. 126: 1361â1373
Burgess SM, Delannoy M and Jensen RE (1994) MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell. Biol., 126: 1375â1391
Berger KH, Sogo LF and Yaffe MP (1997) Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J. Cell. Biol., 136: 545â553
Boldogh I, Vojtov N, Karmon S and Pon LA (1998) Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J. Cell Biol., 141: 1371â1381
Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A and Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93: 1147â1158
Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H and Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79: 1209â1220
Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16: 483â519
van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell. Biol. 9: 96â102
Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W and Shaw JM . (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell. Biol., 143: 333â349
Shepard KA, Yaffe MP (1999) The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J. Cell Biol., 144: 711â720
Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM and Nunnari J . (2000) The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol., 151: 341â352
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J and Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26: 207â210
Imoto M, Tachibana I and Urrutia R (1998) Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J. Cell. Sci. 111 (Part 10): 1341â1349
Labrousse AM, Zappaterra MD, Rube DA and van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4: 815â826
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS and Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26: 211â215
Misaka T, Miyashita T and Kubo Y (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J. Biol. Chem., 277: 15834â15842
Shin HW, Shinotsuka C, Torii S, Murakami K and Nakayama K (1997) Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. (Tokyo) 122: 525â530
Yoon Y, Pitts KR, Dahan S and McNiven MA . (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J. Cell. Biol., 140: 779â793
Kamimoto T, Nagai Y, Onogi H, Muro Y, Wakabayashi T and Hagiwara M (1998) Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Biol. Chem. 273: 1044â1051
Smirnova E, Griparic L, Shurland D-L and van der Bliek AM . (2001) Dynamin-related Protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell., 12: 2245â2256
Cerveny KL, McCaffery JM and Jensen RE (2001) Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Mol. Biol. Cell., 12: 309â321
Fekkes P, Shepard KA and Yaffe MP (2000) Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J. Cell. Biol., 151: 333â340
Mozdy AD, McCaffery JM and Shaw JM . (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell. Biol. 151: 367â380
Tieu Q and Nunnari J . (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell. Biol. 151: 353â366
Tieu Q, Okreglak V, Naylor K and Nunnari J (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J. Cell. Biol. 158: 445â452
Fukushima NH, Brisch E, Keegan BR, Bleazard W and Shaw JM . (2001) The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol. Biol. Cell. 12: 2756â2766
Shin H-W, Takatsu H, Mukai H, Munekata E, Murakami K, Nakayama K (1999) Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J. Biol. Chem. 274: 2780â2785
Hinshaw JE and Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374: 190â192
Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA and Schrader M (2002) The dynamin-like protein DLP1 is involved in peroxisomal fission. J. Biol. Chem. 278: 8597â8605
Takai Y, Sasaki T and Matozaki T (2001) Small GTP-binding proteins. Physiol. Rev. 81: 153â208
Alto NM, Soderling J and Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J. Cell Biol. 158: 659â668
Hales KG and Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 90: 121â129
Rapaport D, Brunner M, Neupert W and Westermann B (1998) Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273: 20150â20155
Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J and Shaw JM (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell. Biol. 143: 359â373
Santel A and Fuller M (2001) Control of mitochondrial morphology by a human mitofusin. J. Cell. Sci. 114: 867â874
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell. Biol. 160: 189â200
Rojo M, Legros F, Chateau D and Lombes A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell. Sci. 115: 1663â1674
Fritz S, Rapaport D, Klanner E, Neupert W and Westermann B (2001) Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J. Cell. Biol. 152: 683â692
Karbowski M, Lee Y-J, Gaume B, Jeong S-Y, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL and Youle RJ . (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell. Biol. 159: 931â938
Sesaki H and Jensen RE (2001) UGO1 Encodes an Outer Membrane Protein Required for Mitochondrial Fusion. J. Cell. Biol. 152: 1123â1134
Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, Guillou E, Delettre C, Valette A, Hamel CP, Ducommun B, Lenaers G and Belenguer P (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523: 171â176
Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX and Kroemer G . (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181: 1661â1672
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S and Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2: 183â192
Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ . (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727â730
Shimizu S, Narita M and Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483â487
Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC and Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027â2031
Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R and Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277: 370â372
Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G and Korsmeyer SJ (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl. Acad. Sci. USA 94: 11357â11362
Kluck RM, Esposti MD, Perkins G, Renken C, Kuwana T, Bossy-Wetzel E, Goldberg M, Allen T, Barber MJ, Green DR and Newmeyer DD (1999) The pro-apoptotic Proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell. Biol. 147: 809â822
von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E and Newmeyer DD (2000) Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J. Cell. Biol. 150: 1027â1036
Scorrano L, Ashiya M, Buttle K, Weiller S, Oakes SA, Mannella CA and Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell. 2: 55â67
Esposti MD, Erler JT, Hickman JA and Dive C (2001) Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol. Cell. Biol. 21: 7268â7276
Epand RF, Martinou J-C, Fornallaz-Mulhauser M, Hughes DW and Epand RM (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277: 32632â32639
Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago J-P and Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21: 221â230
Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P and Lenaers G (2002) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278: 7743â7746
Desagher S and Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell. Biol. 10: 369â377
Capano M and Crompton M (2002) Biphasic translocation of Bax to mitochondria. Biochem. J. 367: 169â178
Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL and Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell. 1: 515â525
Pinton P, Ferrari D, Rapizzi E, Virgilio FD, Pozzan T and Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20: 2690â2701
Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE and Rizzuto R . (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159: 613â624
Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB and Hockenbery DM . (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J. Cell. Biol. 138: 449â469
Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR and Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7: 1306â1312
Breckenridge DG, Stojanovic M, Marcellus RC and Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell. Biol. 160: 1115â1127
Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG and Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell. Biol. 139: 1281â1292
Nechushtan A, Smith CL, Lamensdorf I, Yoon S-H and Youle RJ (2001) Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell. Biol. 153: 1265â1276
Cuddeback SM, Yamaguchi H, Komatsu K, Miyashita T, Yamada M, Wu C, Singh S and Wang H-G (2001) Molecular cloning and characterization of Bif-1. A NOVEL Src HOMOLOGY 3 DOMAIN-CONTAINING PROTEIN THAT ASSOCIATES WITH Bax. J. Biol. Chem. 276: 20559â20565
Pierrat B, Simonen M, Cueto M, Mestan J, Ferrigno P and Heim J (2001) SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics 71: 222â234
Farsad K, Ringstad N, Takei K, Floyd SR, Rose K and De Camilli P . (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell. Biol. 155: 193â200
Yamaguchi H, Paranawithana SR, Lee MW, Huang Z, Bhalla KN and Wang H-G (2002) Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of bax conformational change in human breast cancer cells. Cancer Res. 62: 466â471
Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O and De Camilli P (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24: 143â154
Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB and Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133â141
Hsu YT and Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273: 10777â10783
Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM and Zimmerberg J . (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277: 49360â49365
Nemoto Y and De Camilli P (1999) Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J. 18: 2991â3006
Duncan CJ, Greenaway HC, Publicover SJ, Rudge MF and Smith JL (1980) Experimental production of âseptaâ and apparent subdivision of muscle mitochondria. J. Bioenerg. Biomembr. 12: 13â33
Csordas G, Madesh M, Antonsson B and Hajnoczky G (2002) tcBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane. EMBO J. 21: 2198â2206
McCormick AL, Smith VL, Chow D and Mocarski ES . (2003) Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J. Virol. 77: 631â641
Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han J-w, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES and Chittenden T . (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl. Acad. Sci USA 96: 12536â12541
Colberg-Poley AM, Patel MB, Erezo DP and Slater JE (2000) Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J. Gen. Virol. 81: 1779â1789
Kowaltowski AJ, Cosso RG, Campos CB and Fiskum G (2002) Effect of Bcl-2 overexpression on mitochondrial structure and function. J. Biol. Chem. 277: 42802â42807
Author information
Authors and Affiliations
Corresponding author
Additional information
Edited by G Melino
Rights and permissions
About this article
Cite this article
Karbowski, M., Youle, R. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10, 870â880 (2003). https://doi.org/10.1038/sj.cdd.4401260
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.cdd.4401260
Keywords
This article is cited by
-
Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs
Journal of Animal Science and Biotechnology (2024)
-
Long-term super-resolution inner mitochondrial membrane imaging with a lipid probe
Nature Chemical Biology (2024)
-
The follicle-stimulating hormone triggers rapid changes in mitochondrial structure and function in porcine cumulus cells
Scientific Reports (2024)
-
Neuronal Gtf2i deletion alters mitochondrial and autophagic properties
Communications Biology (2023)
-
Spinal Cord Injury Model Mitochondria Connect Altered Function with Defects of Mitochondrion Morphology: an Ultrastructural Study
Molecular Neurobiology (2023)


