Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into hostâmicrobiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Change history
24 March 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41579-025-01175-w
References
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769â2778 (2017).
Baumgart, D. C. & Sandborn, W. J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641â1657 (2007).
Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39â49 (2018).
Shan, Y., Lee, M. & Chang, E. B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 73, 455â468 (2022).
Gilliland, A., Chan, J. J., De Wolfe, T. J., Yang, H. & Vallance, B. A. Pathobionts in inflammatory bowel disease: origins, underlying mechanisms, and implications for clinical care. Gastroenterology 166, 44â58 (2024).
Lee, M. & Chang, E. B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 160, 524â537 (2021).
Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 606, 754â760 (2022).
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59â65 (2010).
Manichanh, C. Reduced diversity of faecal microbiota in Crohnâs disease revealed by a metagenomic approach. Gut 55, 205â211 (2006).
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489â1499 (2014).
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174â180 (2011).
Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223â237 (2020).
Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930â946.e1 (2020).
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219â232 (2017).
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655â662 (2019).
Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).
Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383â397 (2022).
Pascal, V. et al. A microbial signature for Crohnâs disease. Gut 66, 813â822 (2017).
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293â305 (2018).
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731â16736 (2008).
Fujimoto, T. et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohnâs disease. J. Gastroenterol. Hepatol. 28, 613â619 (2013).
Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841â852 (2017).
Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1â16 (2020).
Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohnâs disease. Gut 65, 415â425 (2016).
Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060â18 (2019).
Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574â587 (2018).
Barrios-Villa, E. et al. Comparative genomics of a subset of adherent/invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 112, 1813â1820 (2020).
Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohnâs disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672â12677 (2019).
Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420â2428 (2010).
Schaus, S. R. et al. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 15, e00039-24 (2024).
Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666â683.e17 (2020).
Chen-Liaw, A. et al. Gut microbiota strain richness is species specific and affects engraftment. Nature 637, 422â429 (2024).
Muller, E., Algavi, Y. M. & Borenstein, E. The gut microbiomeâmetabolome dataset collection: a curated resource for integrative meta-analysis. npj Biofilms Microbiomes 8, 79 (2022).
Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415â420 (2021).
Sorbara, M. T. et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28, 134â146.e4 (2020).
Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).
Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).
Human Microbiome Jumpstart Reference Strains Consortium, et al. A catalog of reference genomes from the human microbiome. Science 328, 994â999 (2010).
Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092âe00118 (2018).
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039â1048 (2017).
Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948â1956 (2015).
Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohnâs disease. mBio 7, e01250â16 (2016).
Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohnâs disease patients. J. Crohns Colitis 10, 296â305 (2016).
Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831â841 (2008).
Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672â678 (2022).
Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).
Limon, J. J. et al. Malassezia is associated with Crohnâs disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377â388.e6 (2019).
Auchtung, T. A. et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat. Commun. 13, 3151 (2022).
Iliev, I. D. et al. Focus on fungi. Cell 187, 5121â5127 (2024).
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559â563 (2014).
Fiers, W. D., Leonardi, I. & Iliev, I. D. From birth and throughout life: fungal microbiota in nutrition and metabolic health. Annu. Rev. Nutr. 40, 323â343 (2020).
Jain, U. et al. Debaryomyces is enriched in Crohnâs disease intestinal tissue and impairs healing in mice. Science 371, 1154â1159 (2021).
Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64â68 (2016).
Richardson, J. P. et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect. Immun. 86, e00645â17 (2018).
Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).
Fiers, W. D., Gao, I. H. & Iliev, I. D. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr. Opin. Microbiol. 50, 79â86 (2019).
Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96â104 (2020).
Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohnâs disease. Gastroenterology 130, 1764â1775 (2006).
Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohnâs disease. Nat. Microbiol. 6, 1493â1504 (2021).
Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017â1031.e14 (2021).
Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohnâs disease. Nat. Med. 29, 2602â2614 (2023).
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340â1355.e15 (2019).
Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447â460 (2015).
Adiliaghdam, F. et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7, eabn6660 (2022).
Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764â778.e5 (2019).
Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285â299.e8 (2019).
Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149â158 (2019).
Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohnâs disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135â1145 (2010).
Tito, R. Y. et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 68, 1180â1189 (2019).
Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527â539 (2020).
Spindler, M. P. et al. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host Microbe 30, 1481â1498.e5 (2022).
Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066â1073 (2011).
Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232â236 (2018).
Chu, H. et al. Geneâmicrobiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116â1120 (2016).
Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715â726 (2015).
Tam, J. M. et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210, 1844â1854 (2014).
Grootjans, J. et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363, 993â998 (2019).
Hui, K. Y. et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohnâs disease and Parkinsonâs disease. Sci. Transl. Med. 10, eaai7795 (2018).
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76â83 (2010).
Pierre, J. F. et al. Peptide YY: a Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502â508 (2023).
Bel, S. et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357, 1047â1052 (2017).
Matsuzawa-Ishimoto, Y. et al. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 610, 547â554 (2022).
Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).
Wang, Y. et al. Long-term culture captures injuryârepair cycles of colonic stem cells. Cell 179, 1144â1159.e15 (2019).
Rana, N. et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 185, 283â298.e17 (2022).
Stappenbeck, T. S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666â1669 (2009).
Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077â1089.e5 (2018).
Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151â163.e5 (2018).
Viladomiu, M. et al. Adherent-invasive E. coli metabolism of propanediol in Crohnâs disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 29, 607â619.e8 (2021).
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461â1463 (2006).
Izcue, A. et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28, 559â570 (2008).
Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727â738 (2015).
Spindler, M. P., Mogno, I., Suri, P., Britton, G. J. & Faith, J. J. Species-specific CD4+ T cells enable prediction of mucosal immune phenotypes from microbiota composition. Proc. Natl Acad. Sci. USA 120, e2215914120 (2023).
Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 185, 831â846.e14 (2022).
Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744â751 (2022).
Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400â1412 (2015).
Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212â224.e4 (2019).
Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367â380 (2015).
Shao, T.-Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404â417.e6 (2019).
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohnâs disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693â1700 (2012).
Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohnâs disease. Am. J. Gastroenterol. 111, 1599â1607 (2016).
Hölttä, V. et al. IL-23/IL-17 immunity as a hallmark of Crohnâs disease. Inflamm. Bowel Dis. 14, 1175â1184 (2008).
Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766â779 (2022).
Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099â1114.e10 (2019).
Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222â2226 (2000).
Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).
Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114â118 (2021).
Lange, O., Proczko-Stepaniak, M. & Mika, A. Short-chain fatty acids â a product of the microbiome and its participation in two-way communication on the microbiomeâhost mammal line. Curr. Obes. Rep. 12, 108â126 (2023).
Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569â573 (2013).
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446â450 (2013).
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451â455 (2013).
Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395â399 (2012).
Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570â575 (2017).
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275â1283 (2014).
Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282â1286 (2009).
Tye, H. et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat. Commun. 9, 3728 (2018).
Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84â98 (2019).
McCrory, C., Lenardon, M. & Traven, A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol. 32, 1106â1118 (2024).
Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236â247 (2023).
van Best, N. et al. Bile acids drive the newbornâs gut microbiota maturation. Nat. Commun. 11, 3692 (2020).
Li, Y., Tang, R., Leung, P. S. C., Gershwin, M. E. & Ma, X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun. Rev. 16, 885â896 (2017).
Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241â259 (2006).
Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685â690 (2015).
Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 829525 (2022).
Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143â148 (2019).
Paik, D. et al. Human gut bacteria produce ΤÎ17-modulating bile acid metabolites. Nature 603, 907â912 (2022).
Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475â479 (2020).
Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410â415 (2020).
Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659â670.e5 (2020).
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123â129 (2020).
Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419â426 (2024).
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716â724 (2018).
Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).
Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848â851 (2006).
Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878â886 (2024).
Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuroâimmune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555â565 (2021).
Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gutâbrain circuit. Nature 583, 441â446 (2020).
Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729â740 (2013).
De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458â6463 (2018).
Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009â1016 (2008).
Margolis, K. G. et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141, 588â598 (2011). 598.e1â2.
Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151â156 (2021).
Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554â563 (2021).
Zhang, W. et al. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 185, 4170â4189.e20 (2022).
Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64â78.e16 (2020).
Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607â620.e17 (2023).
Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284â289 (2020).
Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyerâs patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180, 33â49.e22 (2020).
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut â functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473â486 (2013).
Stasi, C., Bellini, M., Bassotti, G., Blandizzi, C. & Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol. 18, 613â621 (2014).
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264â276 (2015).
Zhai, L. et al. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 31, 33â44.e5 (2023).
Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of hostâmicrobiome relationships. Cell 178, 1041â1056 (2019).
Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine 29â30, 100642 (2020).
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407â415 (2013).
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102â109.e6 (2015).
Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, 1180â1199 (2017).
Colman, R. J. & Rubin, D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 8, 1569â1581 (2014).
Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohnâs disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).
Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110â118.e4 (2015).
Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218â1228 (2017).
Sood, A. et al. Role of faecal microbiota transplantation for maintenance of remission in patients with ulcerative colitis: a pilot study. J. Crohns Colitis 13, 1311â1317 (2019).
Kedia, S. et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut 71, 2401â2413 (2022).
Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503â513 (2021).
Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823â829.e3 (2020).
Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. Br. Med. J. 374, n1554 (2021).
Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501â3519.e20 (2022).
Wali, J. A. et al. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. Nat. Commun. 14, 4409 (2023).
Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137â4153.e14 (2021).
Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578â584 (2022).
Valcheva, R. et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 10, 334â357 (2019).
Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228â240 (2023).
MacLellan, A. et al. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohnâs disease: a review. Nutrients 9, 447 (2017).
Penagini, F. et al. Nutrition in pediatric inflammatory bowel disease: from etiology to treatment. a systematic review. Nutrients 8, 334 (2016).
Gatti, S. et al. Effects of the exclusive enteral nutrition on the microbiota profile of patients with crohnâs disease: a systematic review. Nutrients 9, 832 (2017).
Diederen, K. et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohnâs disease. Sci. Rep. 10, 18879 (2020).
Tursi, A. et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 105, 2218â2227 (2010).
Cheng, F.-S., Pan, D., Chang, B., Jiang, M. & Sang, L.-X. Probiotic mixture VSL#3: an overview of basic and clinical studies in chronic diseases. World J. Clin. Cases 8, 1361â1384 (2020).
Kruis, W. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617â1623 (2004).
Benjamin, J. L. et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohnâs disease. Gut 60, 923â929 (2011).
Eskenazi, A. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat. Commun. 13, 302 (2022).
Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879â2898.e24 (2022).
US National Library of Medicine. ClinicalTrials.gov https://Clinicaltrials.Gov/Ct2/Show/NCT05370885 (2024).
Bethlehem, L. et al. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol. Hepatol. 9, 476â486 (2024).
Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212â1222 (2021).
Lee, J. W. J. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 29, 1294â1304.e4 (2021).
Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603â610.e3 (2017).
Kolho, K.-L. et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110, 921â930 (2015).
Hyams, J. S. et al. Clinical and biological predictors of response to standardised paediatric colitis therapy (PROTECT): a multicentre inception cohort study. Lancet 393, 1708â1720 (2019).
Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohnâs disease: a multicentre inception cohort study. Lancet 389, 1710â1718 (2017).
Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634â643 (2018).
Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018).
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462â467 (2019).
Mehta, R. S. et al. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 29, 700â709 (2023).
Lima, S. F. et al. The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated spondyloarthritis. Cell Rep. Med. 5, 101431 (2024).
Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221â232 (2020).
Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).
Liao, Y. et al. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 636, 697â704 (2024).
Chen, Y.-H. et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci. Immunol. 8, eadd6910 (2023).
Rehermann, B., Graham, A. L., Masopust, D. & Hamilton, S. E. Integrating natural commensals and pathogens into preclinical mouse models. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01108-3 (2024).
Ananthakrishnan, A. N. et al. Challenges in IBD research 2024: environmental triggers. Inflamm. Bowel Dis. 30, S19âS29 (2024).
Pizarro, T. T. et al. Challenges in IBD research: preclinical human IBD mechanisms. Inflamm. Bowel Dis. 25, S5âS12 (2019).
Syed, S. et al. Challenges in IBD research 2024: precision medicine. Inflamm. Bowel Dis. 30, S39âS54 (2024).
Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801â809 (2022).
Amre, D. K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohnâs disease in children. Am. J. Gastroenterol. 102, 2016â2025 (2007).
Knight-Sepulveda, K., Kais, S., Santaolalla, R. & Abreu, M. T. Diet and inflammatory bowel disease. Gastroenterol. Hepatol. 11, 511â520 (2015).
Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92â96 (2015).
Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708â711 (2013).
Savage, H. P. et al. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 32, 1103â1113.e6 (2024).
Acknowledgements
The authors are supported by US National Institutes of Health (R01DK113136, R01DK121977, R01AI178683 and R01CA286920 to I.D.I), (R01AI163007 to I.D.I and C.-J.G). I.D.I. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Irma T. Hirschl Career Scientist Award, the Research Corporation for Science Advancement Award, the Kenneth Rainin Innovator Award, the Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease (PATH) Award and the Cancer Research Institute Lloyd J. Old STAR Award. C.-J.G. was supported by NIH grants DK135816, AI172027, DK132244 and AT013241, the Kenneth Rainin Foundation, the Halvorsen Family Research Scholar in Metabolic Health, the Friedman Center for Nutrition and Inflammation Pilot Award. We thank W.-Y. Lin, J. Patel and S. Chambers for providing editorial support, feedback and help with the figures. I.D.I is a fellow of the Canadian Institute for Advanced Research (CIFAR), programme Fungal Kingdom: Threats and Opportunities.
Author information
Authors and Affiliations
Contributions
The authors contributed to different aspects of the article and revised the final draft jointly. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Kenya Honda, Herbert Tilg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Iliev, I.D., Ananthakrishnan, A.N. & Guo, CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 23, 509â524 (2025). https://doi.org/10.1038/s41579-025-01163-0
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41579-025-01163-0
This article is cited by
-
Unraveling the complexities of diet induced obesity and glucolipid dysfunction in metabolic syndrome
Diabetology & Metabolic Syndrome (2025)
-
Effects of zacopride and multidimensional impacts of cross-kingdom symbiosis: gut microbiota modulates coronary microvascular dysfunction via the chlorophyll/heme-tryptophan metabolic axis
Journal of Translational Medicine (2025)
-
Proteomic profiling of dysbiosis-challenged broilers reveals potential blood biomarkers for intestinal health
Veterinary Research (2025)
-
Macrophage-derived VISTA engages with LRIG1 and hinders gut epithelial repair in colitis
Cellular & Molecular Immunology (2025)
-
GPR15 differentially regulates the effects of cigarette smoke exposure on Crohnâs disease and ulcerative colitis
Signal Transduction and Targeted Therapy (2025)


