Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities

A Publisher Correction to this article was published on 24 March 2025

This article has been updated

Abstract

Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host–microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbiota-derived metabolites, immune and genetic mechanisms, and their effects on inflammation, intestinal biology and IBD.
Fig. 2: Neuroimmune regulation of intestinal barrier function, inflammation and pain.
Fig. 3: Therapeutic options and potential future directions for gut microbiome targeting in IBD.

Similar content being viewed by others

Change history

References

  1. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    Article  PubMed  Google Scholar 

  2. Baumgart, D. C. & Sandborn, W. J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641–1657 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    Article  PubMed  Google Scholar 

  4. Shan, Y., Lee, M. & Chang, E. B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 73, 455–468 (2022).

    Article  PubMed  CAS  Google Scholar 

  5. Gilliland, A., Chan, J. J., De Wolfe, T. J., Yang, H. & Vallance, B. A. Pathobionts in inflammatory bowel disease: origins, underlying mechanisms, and implications for clinical care. Gastroenterology 166, 44–58 (2024).

    Article  PubMed  CAS  Google Scholar 

  6. Lee, M. & Chang, E. B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 160, 524–537 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 606, 754–760 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Manichanh, C. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  13. Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930–946.e1 (2020).

    Article  PubMed  Google Scholar 

  14. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).

    Article  PubMed  Google Scholar 

  18. Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).

    Article  PubMed  Google Scholar 

  20. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fujimoto, T. et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J. Gastroenterol. Hepatol. 28, 613–619 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16 (2020).

    Article  PubMed  Google Scholar 

  25. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article  PubMed  Google Scholar 

  26. Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060–18 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Barrios-Villa, E. et al. Comparative genomics of a subset of adherent/invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 112, 1813–1820 (2020).

    Article  PubMed  CAS  Google Scholar 

  29. Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Schaus, S. R. et al. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 15, e00039-24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683.e17 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen-Liaw, A. et al. Gut microbiota strain richness is species specific and affects engraftment. Nature 637, 422–429 (2024).

    Article  PubMed  Google Scholar 

  34. Muller, E., Algavi, Y. M. & Borenstein, E. The gut microbiome–metabolome dataset collection: a curated resource for integrative meta-analysis. npj Biofilms Microbiomes 8, 79 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sorbara, M. T. et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28, 134–146.e4 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Human Microbiome Jumpstart Reference Strains Consortium, et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).

    Article  Google Scholar 

  40. Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092–e00118 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  PubMed  CAS  Google Scholar 

  42. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    Article  PubMed  Google Scholar 

  43. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296–305 (2016).

    Article  PubMed  Google Scholar 

  45. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    Article  PubMed  CAS  Google Scholar 

  46. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).

    Article  PubMed  Google Scholar 

  48. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Auchtung, T. A. et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat. Commun. 13, 3151 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Iliev, I. D. et al. Focus on fungi. Cell 187, 5121–5127 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Fiers, W. D., Leonardi, I. & Iliev, I. D. From birth and throughout life: fungal microbiota in nutrition and metabolic health. Annu. Rev. Nutr. 40, 323–343 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Richardson, J. P. et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect. Immun. 86, e00645–17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fiers, W. D., Gao, I. H. & Iliev, I. D. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr. Opin. Microbiol. 50, 79–86 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

    Article  PubMed  CAS  Google Scholar 

  59. Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130, 1764–1775 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e14 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e15 (2019).

    Article  PubMed  CAS  Google Scholar 

  64. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Adiliaghdam, F. et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7, eabn6660 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    Article  PubMed  CAS  Google Scholar 

  67. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149–158 (2019).

    Article  PubMed  CAS  Google Scholar 

  69. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tito, R. Y. et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 68, 1180–1189 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Spindler, M. P. et al. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host Microbe 30, 1481–1498.e5 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chu, H. et al. Gene–microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tam, J. M. et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210, 1844–1854 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Grootjans, J. et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363, 993–998 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hui, K. Y. et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 10, eaai7795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    Article  PubMed  CAS  Google Scholar 

  81. Pierre, J. F. et al. Peptide YY: a Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502–508 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bel, S. et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357, 1047–1052 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Matsuzawa-Ishimoto, Y. et al. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 610, 547–554 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang, Y. et al. Long-term culture captures injury–repair cycles of colonic stem cells. Cell 179, 1144–1159.e15 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rana, N. et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 185, 283–298.e17 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Stappenbeck, T. S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666–1669 (2009).

    Article  PubMed  CAS  Google Scholar 

  88. Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089.e5 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163.e5 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Viladomiu, M. et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 29, 607–619.e8 (2021).

    Article  PubMed  CAS  Google Scholar 

  91. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Izcue, A. et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28, 559–570 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Spindler, M. P., Mogno, I., Suri, P., Britton, G. J. & Faith, J. J. Species-specific CD4+ T cells enable prediction of mucosal immune phenotypes from microbiota composition. Proc. Natl Acad. Sci. USA 120, e2215914120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 185, 831–846.e14 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Shao, T.-Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Hölttä, V. et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm. Bowel Dis. 14, 1175–1184 (2008).

    Article  PubMed  Google Scholar 

  104. Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099–1114.e10 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  PubMed  CAS  Google Scholar 

  108. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lange, O., Proczko-Stepaniak, M. & Mika, A. Short-chain fatty acids — a product of the microbiome and its participation in two-way communication on the microbiome–host mammal line. Curr. Obes. Rep. 12, 108–126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  PubMed  CAS  Google Scholar 

  112. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Tye, H. et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat. Commun. 9, 3728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. McCrory, C., Lenardon, M. & Traven, A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol. 32, 1106–1118 (2024).

    Article  PubMed  CAS  Google Scholar 

  121. Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article  PubMed  CAS  Google Scholar 

  122. van Best, N. et al. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 11, 3692 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li, Y., Tang, R., Leung, P. S. C., Gershwin, M. E. & Ma, X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun. Rev. 16, 885–896 (2017).

    Article  PubMed  CAS  Google Scholar 

  124. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  PubMed  CAS  Google Scholar 

  125. Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 829525 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  PubMed  CAS  Google Scholar 

  131. Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670.e5 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024).

    Article  PubMed  CAS  Google Scholar 

  134. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  PubMed  CAS  Google Scholar 

  135. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  PubMed  Google Scholar 

  137. Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro–immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    Article  PubMed  CAS  Google Scholar 

  141. De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009–1016 (2008).

    Article  PubMed  CAS  Google Scholar 

  143. Margolis, K. G. et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141, 588–598 (2011). 598.e1–2.

    Article  PubMed  Google Scholar 

  144. Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zhang, W. et al. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 185, 4170–4189.e20 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620.e17 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).

    Article  PubMed  CAS  Google Scholar 

  150. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180, 33–49.e22 (2020).

    Article  PubMed  CAS  Google Scholar 

  151. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Stasi, C., Bellini, M., Bassotti, G., Blandizzi, C. & Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol. 18, 613–621 (2014).

    Article  PubMed  CAS  Google Scholar 

  153. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhai, L. et al. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 31, 33–44.e5 (2023).

    Article  PubMed  CAS  Google Scholar 

  155. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host–microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine 29–30, 100642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  Google Scholar 

  158. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).

    Article  PubMed  Google Scholar 

  159. Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, 1180–1199 (2017).

    Article  PubMed  Google Scholar 

  160. Colman, R. J. & Rubin, D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 8, 1569–1581 (2014).

    Article  PubMed  Google Scholar 

  161. Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    Article  PubMed  Google Scholar 

  163. Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

    Article  PubMed  Google Scholar 

  164. Sood, A. et al. Role of faecal microbiota transplantation for maintenance of remission in patients with ulcerative colitis: a pilot study. J. Crohns Colitis 13, 1311–1317 (2019).

    Article  PubMed  Google Scholar 

  165. Kedia, S. et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut 71, 2401–2413 (2022).

    Article  PubMed  CAS  Google Scholar 

  166. Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).

    Article  PubMed  Google Scholar 

  167. Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823–829.e3 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. Br. Med. J. 374, n1554 (2021).

    Article  Google Scholar 

  169. Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501–3519.e20 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Wali, J. A. et al. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. Nat. Commun. 14, 4409 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Valcheva, R. et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 10, 334–357 (2019).

    Article  PubMed  CAS  Google Scholar 

  174. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  PubMed  CAS  Google Scholar 

  175. MacLellan, A. et al. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients 9, 447 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Penagini, F. et al. Nutrition in pediatric inflammatory bowel disease: from etiology to treatment. a systematic review. Nutrients 8, 334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gatti, S. et al. Effects of the exclusive enteral nutrition on the microbiota profile of patients with crohn’s disease: a systematic review. Nutrients 9, 832 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Diederen, K. et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci. Rep. 10, 18879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tursi, A. et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 105, 2218–2227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cheng, F.-S., Pan, D., Chang, B., Jiang, M. & Sang, L.-X. Probiotic mixture VSL#3: an overview of basic and clinical studies in chronic diseases. World J. Clin. Cases 8, 1361–1384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kruis, W. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Benjamin, J. L. et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 60, 923–929 (2011).

    Article  PubMed  CAS  Google Scholar 

  183. Eskenazi, A. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat. Commun. 13, 302 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).

    Article  PubMed  CAS  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://Clinicaltrials.Gov/Ct2/Show/NCT05370885 (2024).

  186. Bethlehem, L. et al. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol. Hepatol. 9, 476–486 (2024).

    Article  PubMed  CAS  Google Scholar 

  187. Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    Article  PubMed  CAS  Google Scholar 

  188. Lee, J. W. J. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 29, 1294–1304.e4 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Kolho, K.-L. et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110, 921–930 (2015).

    Article  PubMed  Google Scholar 

  191. Hyams, J. S. et al. Clinical and biological predictors of response to standardised paediatric colitis therapy (PROTECT): a multicentre inception cohort study. Lancet 393, 1708–1720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389, 1710–1718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).

    PubMed  CAS  Google Scholar 

  194. Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Mehta, R. S. et al. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 29, 700–709 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Lima, S. F. et al. The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated spondyloarthritis. Cell Rep. Med. 5, 101431 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  PubMed  CAS  Google Scholar 

  199. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Liao, Y. et al. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 636, 697–704 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Chen, Y.-H. et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci. Immunol. 8, eadd6910 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Rehermann, B., Graham, A. L., Masopust, D. & Hamilton, S. E. Integrating natural commensals and pathogens into preclinical mouse models. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01108-3 (2024).

  203. Ananthakrishnan, A. N. et al. Challenges in IBD research 2024: environmental triggers. Inflamm. Bowel Dis. 30, S19–S29 (2024).

    Article  PubMed  Google Scholar 

  204. Pizarro, T. T. et al. Challenges in IBD research: preclinical human IBD mechanisms. Inflamm. Bowel Dis. 25, S5–S12 (2019).

    Article  PubMed  Google Scholar 

  205. Syed, S. et al. Challenges in IBD research 2024: precision medicine. Inflamm. Bowel Dis. 30, S39–S54 (2024).

    Article  PubMed  Google Scholar 

  206. Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801–809 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Amre, D. K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. Am. J. Gastroenterol. 102, 2016–2025 (2007).

    Article  PubMed  CAS  Google Scholar 

  208. Knight-Sepulveda, K., Kais, S., Santaolalla, R. & Abreu, M. T. Diet and inflammatory bowel disease. Gastroenterol. Hepatol. 11, 511–520 (2015).

    Google Scholar 

  209. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Savage, H. P. et al. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 32, 1103–1113.e6 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by US National Institutes of Health (R01DK113136, R01DK121977, R01AI178683 and R01CA286920 to I.D.I), (R01AI163007 to I.D.I and C.-J.G). I.D.I. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Irma T. Hirschl Career Scientist Award, the Research Corporation for Science Advancement Award, the Kenneth Rainin Innovator Award, the Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease (PATH) Award and the Cancer Research Institute Lloyd J. Old STAR Award. C.-J.G. was supported by NIH grants DK135816, AI172027, DK132244 and AT013241, the Kenneth Rainin Foundation, the Halvorsen Family Research Scholar in Metabolic Health, the Friedman Center for Nutrition and Inflammation Pilot Award. We thank W.-Y. Lin, J. Patel and S. Chambers for providing editorial support, feedback and help with the figures. I.D.I is a fellow of the Canadian Institute for Advanced Research (CIFAR), programme Fungal Kingdom: Threats and Opportunities.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to different aspects of the article and revised the final draft jointly. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Iliyan D. Iliev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Kenya Honda, Herbert Tilg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, I.D., Ananthakrishnan, A.N. & Guo, CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 23, 509–524 (2025). https://doi.org/10.1038/s41579-025-01163-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01163-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology