Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic lethality in cancer drug discovery: challenges and opportunities

Abstract

Synthetic lethality, first proposed more than two decades ago, has long held immense promise for targeted cancer therapy. Although the clinical success of PARP inhibition in BRCA-mutant cancers stands as proof of concept, few other synthetic lethal interactions have been translated from preclinical findings into effective therapies. This slow pace of translation stems in part from the difficulty of developing drugs against genetic dependencies, but also reflects the cell- and tissue-specific nature of these interactions. In this Review, we outline recent advances in the discovery and validation of synthetic lethal pairs, from their discovery in large-scale genetic screens to the development of drugs for the clinic. We discuss how alternative CRISPR-based approaches — including combinatorial screens, base editing and saturation mutagenesis — are now being used to discover new tractable interactions. We also examine how machine learning models can enable prioritization of candidate pairs and the identification of biomarkers for patient stratification. Finally, we highlight alternative phenotypic readouts, such as high-content imaging and single-cell profiling, which enable the dissection of phenotypes beyond simple cell growth or fitness. Together, these developments are refining the synthetic lethality paradigm and advancing its potential for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic lethality — from discovery to clinic.
Fig. 2: Systems for combinatorial or multiplex CRISPR screening of gene pairs for the identification of synthetic lethal interactions at scale.
Fig. 3: Tools to define target function with nucleotide resolution.
Fig. 4: Computational approaches to predict synthetic lethal interactions.

Similar content being viewed by others

References

  1. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7, a016600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pettitt, S. J. et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 10, 1475–1488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tutt, A. N. J. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384, 2394–2405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langelier, M.-F., Lin, X., Zha, S. & Pascal, J. M. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Sci. Adv. 9, eadf7175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  8. Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  10. Gonçalves, E. et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 40, 835–849.e8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Pacini, C. et al. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell 42, 301–316.e9 (2024). This article provides a recent systematic analysis of genetic dependencies in 930 cancer cell lines, linking biomarkers with potential therapeutic targets and analysing the prevalence of these biomarkers in patient populations.

    Article  CAS  PubMed  Google Scholar 

  13. Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019). References 16 and 17 both show for the first time using CRISPR–Cas9 screens that WRN is synthetically lethal in MSI cancers.

    Article  Google Scholar 

  18. Picco, G. et al. Werner helicase is a synthetic-lethal vulnerability in mismatch repair-deficient colorectal cancer refractory to targeted therapies, chemotherapy and immunotherapy. Cancer Discov. 11, 1923–1937 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT06004245.

  20. Adams, D. & McDermott, U. Editorial overview: cancer genomics: kill it. Kill it dead. Curr. Opin. Genet. Dev. 24, v–vi (2014).

    Article  CAS  PubMed  Google Scholar 

  21. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).

    Article  PubMed  Google Scholar 

  22. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Setton, J. et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11, 1626–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schäffer, A. A., Chung, Y., Kammula, A. V., Ruppin, E. & Lee, J. S. A systematic analysis of the landscape of synthetic lethality-driven precision oncology. Med 5, 73–89.e9 (2024). This article provides a systematic analysis of SL therapies in clinical trials, revealing that most of these therapies involve genes in the DDR and that success rates for SL trials are generally higher than for non-SL therapies.

    Article  PubMed  Google Scholar 

  26. Ryan, C. J., Mehta, I., Kebabci, N. & Adams, D. J. Targeting synthetic lethal paralogs in cancer. Trends Cancer Res. 9, 397–409 (2023).

    Article  CAS  Google Scholar 

  27. Ryan, C. J., Devakumar, L. P. S., Pettitt, S. J. & Lord, C. J. Complex synthetic lethality in cancer. Nat. Genet. 55, 2039–2048 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Ross, J. S. et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14, 320–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, J. et al. SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery. Database 2022, baac030 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gökbağ, B. et al. SLKB: synthetic lethality knowledge base. Nucleic Acids Res. 52, D1418–D1428 (2024).

    Article  PubMed  Google Scholar 

  34. Zatreanu, D. et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gravells, P., Grant, E., Smith, K. M., James, D. I. & Bryant, H. E. Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase. DNA Repair. 52, 81–91 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yap, T. A. et al. First-in-human phase I trial of the oral first-in-class ubiquitin specific peptidase 1 (USP1) inhibitor KSQ-4279 (KSQi), given as single agent (SA) and in combination with olaparib (OLA) or carboplatin (CARBO) in patients (pts) with advanced solid tumors, enriched for deleterious homologous recombination repair (HRR) mutations. J. Clin. Oncol. 42(16_Suppl.), 3005 (2024).

    Article  Google Scholar 

  37. Simoneau, A. Abstract B054: TNG348, a selective USP1 inhibitor, shows strong preclinical combination activity with PARP inhibitors and other agents targeting DNA repair. Mol. Cancer Ther. 22, B054 (2023).

    Article  Google Scholar 

  38. Ryan, C. J., Bajrami, I. & Lord, C. J. Synthetic lethality and cancer - penetrance as the major barrier. Trends Cancer Res. 4, 671–683 (2018).

    Article  CAS  Google Scholar 

  39. Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ku, A. A. et al. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility. Nat. Commun. 11, 2375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658–4670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lord, C. J., Quinn, N. & Ryan, C. J. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions. eLife 9, e58925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson, N. A. et al. Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nat. Commun. 12, 1302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin, T. D. et al. A role for mitochondrial translation in promotion of viability in K-Ras mutant cells. Cell Rep. 20, 427–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adam, S. et al. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. Nat. Cancer 2, 1357–1371 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsujino, T. et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat. Commun. 14, 252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harvey-Jones, E. et al. Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann. Oncol. 35, 364–380 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, Y. et al. The BRCA1-Δ11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res. 76, 2778–2790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, H. S. et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155, 552–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Herken, B. W., Wong, G. T., Norman, T. M. & Gilbert, L. A. Environmental challenge rewires functional connections among human genes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.09.552346 (2023).

  54. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017). Seminal paper introducing the concept of a Cancer Dependency Map.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    Article  PubMed  Google Scholar 

  60. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chory, E. J. et al. Chemical inhibitors of a selective SWI/SNF function synergize with ATR inhibition in cancer cell killing. ACS Chem. Biol. 15, 1685–1696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sasso, J. M. et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry 62, 601–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021). This Review provides a systematic effort to identify proteins that might be druggable using PROTAC approaches, identifying 1,336 promising candidates.

    Article  CAS  PubMed  Google Scholar 

  66. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tejwani, V. et al. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci. Rep. 14, 20824 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, Y. et al. Development of an orally bioavailable CDK12/13 degrader and induction of synthetic lethality with AKT pathway inhibition. Cell Rep. Med. 5, 101752 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller, F. L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshihama, Y. et al. Potent and selective PTDSS1 inhibitors induce collateral lethality in cancers with PTDSS2 deletion. Cancer Res. 82, 4031–4043 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Benedetti, L., Cereda, M., Monteverde, L., Desai, N. & Ciccarelli, F. D. Synthetic lethal interaction between the tumour suppressor STAG2 and its paralog STAG1. Oncotarget 8, 37619–37632 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Leonard, P. G. et al. SF2312 is a natural phosphonate inhibitor of enolase. Nat. Chem. Biol. 12, 1053–1058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin, Y.-H. et al. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nat. Metab. 2, 1413–1426 (2020). This article describes the development of a paralogue-specific inhibitor for ENO2 that exploits a collateral lethality associated with ENO1 deletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Herencia-Ropero, A. et al. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med. 16, 107 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johannes, J. W. et al. Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD5305): a PARP1-DNA trapper with high selectivity for PARP1 over PARP2 and other PARPs. J. Med. Chem. 64, 14498–14512 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Dvorak, V. et al. Paralog-dependent isogenic cell assay cascade generates highly selective SLC16A3 inhibitors. Cell Chem. Biol. 30, 953–964.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gonçalves, E. et al. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol. Syst. Biol. 16, e9405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krill-Burger, J. M. et al. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal. Genome Biol. 24, 192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Steckel, M. et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22, 1227–1245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marjon, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016). References 84, 85 and 86 present a series of studies all demonstrating, using multiple models and gene perturbation approaches, that homozygous deletion of MTAP is associated with increased sensitivity to PRMT5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cottrell, K. M. et al. MTA-cooperative PRMT5 inhibitors: mechanism switching through structure-based design. J. Med. Chem. 68, 4217–4236 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, C. R. et al. Fragment-based discovery of MRTX1719, a synthetic lethal inhibitor of the PRMT5•MTA complex for the treatment of MTAP-deleted cancers. J. Med. Chem. 65, 1749–1766 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Cottrell, K. M. et al. Discovery of TNG908: a selective, brain penetrant, MTA-cooperative PRMT5 inhibitor that is synthetically lethal with MTAP-deleted cancers. J. Med. Chem. 67, 6064–6080 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodon, J. et al. First-in-human study of AMG 193, an MTA-cooperative PRMT5 inhibitor, in patients with MTAP-deleted solid tumors: results from phase I dose exploration. Ann. Oncol. 35, 1138–1147 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Engstrom, L. D. et al. MRTX1719 is an MTA-cooperative PRMT5 inhibitor that exhibits synthetic lethality in preclinical models and patients with MTAP-deleted cancer. Cancer Discov. 13, 2412–2431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cacheiro, P. et al. Human and mouse essentiality screens as a resource for disease gene discovery. Nat. Commun. 11, 655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Groza, T. et al. The International mouse phenotyping consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 51, D1038–D1045 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Ringel, T. et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26, 431–440.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. LaFargue, C. J., Dal Molin, G. Z., Sood, A. K. & Coleman, R. L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 20, e15–e28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Simoneau, A. et al. Characterization of TNG348: a selective, allosteric USP1 inhibitor that synergizes with PARP inhibitors in tumors with homologous recombination deficiency. Mol. Cancer Ther. 24, 678–691 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burris, H. A. et al. A phase I study of ATR inhibitor gartisertib (M4344) as a single agent and in combination with carboplatin in patients with advanced solid tumours. Br. J. Cancer 130, 1131–1140 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bland, P. et al. SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response. Nat. Genet. 55, 1311–1323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lappin, K. M. et al. Cancer-associated SF3B1 mutations confer a BRCA-like cellular phenotype and synthetic lethality to PARP inhibitors. Cancer Res. 82, 819–830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brenner, J. C. et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 72, 1608–1613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bajrami, I. et al. E-Cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8, 498–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017). This article provides an early example of rational selection of gene pairs for screening in a combinatorial CRISPR screen, focusing on known drug targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Najm, F. J. et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Genome Biol. 21, 262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Esmaeili Anvar, N. et al. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat. Commun. 15, 3577 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, 499–513 (2020). This article reports the results from a CRISPR screen, using Cas12a, to identify synthetic lethality between human paralogue pairs across three cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Hsiung, C. C.-S. et al. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat. Biotechnol. 43, 369–383 (2025).

    Article  CAS  PubMed  Google Scholar 

  115. Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell 46, 691–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Kegel, B., Quinn, N., Thompson, N. A., Adams, D. J. & Ryan, C. J. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines. Cell Syst. 12, 1144–1159.e6 (2021). This study describes the development of a machine learning approach to predict synthetic lethality between all human paralogue pairs and demonstrates that this model can predict the results of combinatorial CRISPR screens.

    Article  PubMed  Google Scholar 

  120. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Simpson, D., Ling, J., Jing, Y. & Adamson, B. Mapping the genetic interaction network of PARP inhibitor response. Preprint at bioRxiv https://doi.org/10.1101/2023.08.19.553986 (2023).

  123. Fielden, J. et al. Comprehensive interrogation of synthetic lethality in the DNA damage response. Nature 640, 1093–1102 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong, S. L. et al. Combining biological networks to predict genetic interactions. Proc. Natl Acad. Sci. USA 101, 15682–15687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Picco, G. et al. Novel WRN helicase inhibitors selectively target microsatellite-unstable cancer cells. Cancer Discov. 14, 1457–1475 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dace, P. & Findlay, G. M. Reducing uncertainty in genetic testing with saturation genome editing. Med. Genet. 34, 297–304 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Waters, A. J. et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat. Genet. 56, 1434–1445 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Olvera-León, R. et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 187, 5719–5734.e19 (2024).

    Article  PubMed  Google Scholar 

  131. Coelho, M. A. et al. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat. Genet. 56, 2479–2492 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cagiada, M. et al. Discovering functionally important sites in proteins. Nat. Commun. 14, 4175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tischler, J., Lehner, B. & Fraser, A. G. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40, 390–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 8, 341–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B. & Botstein, D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA 100, 8348–8353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Srivas, R. et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol. Cell 63, 514–525 (2016). This article provides a systematic analysis of SL interactions conserved from yeast to humans, demonstrating that this conservation is, at least to some extent, predictable using a machine learning approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nilsson, A. & Nielsen, J. Genome scale metabolic modeling of cancer. Metab. Eng. 43, 103–112 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Zomorrodi, A. R. & Maranas, C. D. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst. Biol. 4, 178 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Szappanos, B. et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43, 656–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Pel, D. M. et al. An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development. PLoS Genet. 9, e1003254 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tosti, E. et al. Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Med. 6, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mengwasser, K. E. et al. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets. Mol. Cell 73, 885–899.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Guo, E. et al. FEN1 endonuclease as a therapeutic target for human cancers with defects in homologous recombination. Proc. Natl Acad. Sci. USA 117, 19415–19424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, L. et al. Chemical-genetic profiling of imidazo[1,2-a]pyridines and -pyrimidines reveals target pathways conserved between yeast and human cells. PLoS Genet. 4, e1000284 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Trastulla, L., Noorbakhsh, J., Vazquez, F., McFarland, J. & Iorio, F. Computational estimation of quality and clinical relevance of cancer cell lines. Mol. Syst. Biol. 18, e11017 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Boehm, J. S. et al. Cancer research needs a better map. Nature 589, 514–516 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jerby-Arnon, L. et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158, 1199–1209 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Sinha, S. et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat. Commun. 8, 15580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, J. S. et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat. Commun. 9, 2546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lee, J. S. et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 184, 2487–2502.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Barrena, N., Valcárcel, L. V., Olaverri-Mendizabal, D., Apaolaza, I. & Planes, F. J. Synthetic lethality in large-scale integrated metabolic and regulatory network models of human cells. NPJ Syst. Biol. Appl. 9, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, C. & Hua, Q. Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol. 6, 413 (2015).

    PubMed  Google Scholar 

  157. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011). Reference 157 demonstrates the use of metabolic flux balance modelling to predict new SL targets in cancer, predicting haem oxygenase to be SL with the tumour suppressor fumarate hydratase. These results are subsequently confirmed in reference 158.

    Article  CAS  PubMed  Google Scholar 

  159. Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Alzoubi, D., Desouki, A. A. & Lercher, M. J. Flux balance analysis with or without molecular crowding fails to predict two thirds of experimentally observed epistasis in yeast. Sci. Rep. 9, 11837 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kryazhimskiy, S. Emergence and propagation of epistasis in metabolic networks. eLife 10, e60200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Seale, C., Tepeli, Y. & Gonçalves, J. P. Overcoming selection bias in synthetic lethality prediction. Bioinformatics 38, 4360–4368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Feng, Y. et al. Benchmarking machine learning methods for synthetic lethality prediction in cancer. Nat. Commun. 15, 9058 (2024). This article describes a systematic effort to benchmark machine learning methods to predict synthetic lethality, demonstrating that performance is highly dependent on the source of ‘true-positive’ SLs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zamanighomi, M. et al. GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. Genome Biol. 20, 137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)-round XIV. Proteins 89, 1607–1617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guo, J., Liu, H. & Zheng, J. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 44, D1011–D1017 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Bray, M.-A. et al. Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Way, G. P. et al. Predicting cell health phenotypes using image-based morphology profiling. Mol. Biol. Cell 32, 995–1005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol. Syst. Biol. 19, e11517 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ji, Y. et al. Scalable and universal prediction of cellular phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2024.08.12.607533 (2024).

  173. Regev, A. et al. The human cell atlas. eLife 6, 121202 (2017).

    Article  Google Scholar 

  174. Zhang, J. et al. Tahoe-100M: a Giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).

  175. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, A. C. et al. X-atlas/Orion: genome-wide Perturb-seq datasets via a scalable fix-cryopreserve platform for training dose-dependent biological foundation models. Preprint at bioRxiv https://doi.org/10.1101/2025.06.11.659105 (2025).

  177. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 9 (2022).

    Article  Google Scholar 

  180. Heigwer, F. et al. A global genetic interaction network by single-cell imaging and machine learning. Cell Syst. 14, 346–362.e6 (2023). This article demonstrates in fruit fly cells how high-content imaging can be combined with genetic interaction screening to reveal interactions that impact phenotypes beyond growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Baek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Cagiada, M., Thomasen, F. E., Ovchinnikov, S., Deane, C. M. & Lindorff-Larsen, K. AF2χ: predicting protein side-chain rotamer distributions with AlphaFold2. Preprint at bioRxiv https://doi.org/10.1101/2025.04.16.649219 (2025).

  186. Borkakoti, N. & Thornton, J. M. AlphaFold2 protein structure prediction: implications for drug discovery. Curr. Opin. Struct. Biol. 78, 102526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024).

    Article  CAS  PubMed  Google Scholar 

  188. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Munson, B. P. et al. De novo generation of multi-target compounds using deep generative chemistry. Nat. Commun. 15, 3636 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tang, X. et al. A survey of generative AI for de novo drug design: new frontiers in molecule and protein generation. Brief. Bioinform. 25, bbae338 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gangwal, A. & Lavecchia, A. Unleashing the power of generative AI in drug discovery. Drug Discov. Today 29, 103992 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182, 481–496.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Davoodi, S., Daryaee, F., Chang, A., Walker, S. G. & Tonge, P. J. Correlating drug-target residence time and post-antibiotic effect: insight into target vulnerability. ACS Infect. Dis. 6, 629–636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Price, S. et al. A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci. Rep. 12, 5571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Okines, A. et al. Abstract P2-07-24: results from the phase II study of ROS1 targeting with crizotinib in advanced E-cadherin negative lobular breast cancer (ROLo). Clin. Cancer Res. 31(12_Suppl.), P2-07-24 (2025).

    Article  Google Scholar 

  196. Ahn, D. H. et al. Onvansertib in combination with chemotherapy and bevacizumab in second-line treatment of KRAS-mutant metastatic colorectal cancer: a single-arm, phase II trial. J. Clin. Oncol. 43, 840–851 (2025).

    Article  CAS  PubMed  Google Scholar 

  197. Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Bairoch, A. The cellosaurus, a cell-line knowledge resource. J. Biomol. Tech. 29, 25–38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Holbeck, S. L., Collins, J. M. & Doroshow, J. H. Analysis of food and drug administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 9, 1451–1460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Garcia-Alonso, L. et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res. 78, 769–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Li, J. et al. Characterization of human cancer cell lines reverse-phase protein arrays. Cancer Cell 31, 225–239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Roumeliotis, T. I. et al. Genomic determinants of protein abundance variation in colorectal cancer cells. Cell Rep. 20, 2201–2214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nusinow, D. P. et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell 180, 387–402.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shorthouse, D., Bradley, J., Critchlow, S. E., Bendtsen, C. & Hall, B. A. Heterogeneity of the cancer cell line metabolic landscape. Mol. Syst. Biol. 18, e11006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cherkaoui, S. et al. A functional analysis of 180 cancer cell lines reveals conserved intrinsic metabolic programs. Mol. Syst. Biol. 18, e11033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Jaaks, P. et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bashi, A. C. et al. Large-scale pan-cancer cell line screening identifies actionable and effective drug combinations. Cancer Discov. 14, 846–865 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Turner, N. C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lord, C. J., McDonald, S., Swift, S., Turner, N. C. & Ashworth, A. A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair 7, 2010–2019 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Vizeacoumar, F. J. et al. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol. Syst. Biol. 9, 696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. McDonald, E. R. 3rd et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. De Kegel, B. & Ryan, C. J. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines. PLoS Genet. 15, e1008466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Sharma, S., Dincer, C., Weidemüller, P., Wright, G. J. & Petsalaki, E. CEN-tools: an integrative platform to identify the contexts of essential genes. Mol. Syst. Biol. 16, e9698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Madhukar, N. S., Elemento, O. & Pandey, G. Prediction of genetic interactions using machine learning and network properties. Front. Bioeng. Biotechnol. 3, 172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Conde-Pueyo, N., Munteanu, A., Solé, R. V. & Rodríguez-Caso, C. Human synthetic lethal inference as potential anti-cancer target gene detection. BMC Syst. Biol. 3, 116 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Lu, X., Kensche, P. R., Huynen, M. A. & Notebaart, R. A. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. Nat. Commun. 4, 2124 (2013).

    Article  PubMed  Google Scholar 

  228. Kim, J. W. et al. Characterizing genomic alterations in cancer by complementary functional associations. Nat. Biotechnol. 34, 539–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Apaolaza, I. et al. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism. Nat. Commun. 8, 459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Park, S. & Lehner, B. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types. Mol. Syst. Biol. 11, 824 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Liany, H., Jeyasekharan, A. & Rajan, V. Predicting synthetic lethal interactions using heterogeneous data sources. Bioinformatics 36, 2209–2216 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Liu, X. et al. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers. Bioinformatics 38, ii106–ii112 (2022).

    Article  PubMed  Google Scholar 

  233. Srivatsa, S. et al. Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens. Nat. Commun. 13, 7748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Menden, M. P. et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE 8, e61318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Dempster, J. M. et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat. Commun. 10, 5817 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cancer Cell Line Encyclopedia Consortium & Genomics of Drug Sensitivity in Cancer Consortium.Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015).

    Article  Google Scholar 

  237. Cai, Z. et al. Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning. Nat. Commun. 15, 10390 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Najgebauer, H. et al. CELLector: genomics-guided selection of cancer in vitro models. Cell Syst. 10, 424–432.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Bonneville, R. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, PO.17.00073 (2017).

    PubMed  Google Scholar 

  242. Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. eLife 8, e43333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Kategaya, L., Perumal, S. K., Hager, J. H. & Belmont, L. D. Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13, 488–497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Stover, E. H., Fuh, K., Konstantinopoulos, P. A., Matulonis, U. A. & Liu, J. F. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol. Oncol. 159, 887–898 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Ferretti, S. et al. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 629, 443–449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Kikuchi, S. et al. Abstract ND11: chemoproteomic-enabled discovery of VVD-214, a synthetic lethal allosteric inhibitor of WRN helicase. Cancer Res. 84(7_Suppl.), ND11 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

E.G. work is supported by FCT (Fundação para a Ciência e Tecnologia), under projects UIDB/50021/2020 (DOI:10.54499/UIDB/50021/2020), 2024.07252.IACDC (https://doi.org/10.54499/2024.07252.IACDC, through RE-C05-i08.M04) and grant number 15030 (https://doi.org/10.54499/LISBOA2030-FEDER-00868200). C.J.R. is funded by Research Ireland under grant number 20/FFP‐P/8641. D.J.A. is supported by the Wellcome Trust, CR-UK and the UKRI, Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Emanuel Gonçalves, Colm J. Ryan or David J. Adams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CellModelPassports: https://cellmodelpassports.sanger.ac.uk/

clinicaltrials.gov: clinicaltrials.gov

DepMap Portal: https://depmap.org/portal/

GDSC / CancerRxGenes: https://www.cancerrxgene.org/

Project Score: https://score.depmap.sanger.ac.uk/

Glossary

Assay miniaturization

The process of reducing the volume of reagents and samples in laboratory assays, enabling high-throughput screening with increased efficiency and reduced costs.

Collateral lethality

Deletion of a gene, for example, a tumour suppressor gene, that inadvertently leads to the loss of neighbouring genes, known as passenger genes, resulting in a therapeutic vulnerability that can be exploited for targeted cancer treatment.

Epistasis

A genetic interaction in which the effect of one gene is modified by one or more other genes.

HAP1 LIG4-null cells

A genetically engineered variant of the human HAP1 cell line in which the LIG4 gene, encoding DNA ligase IV, has been knocked out, disrupting the non-homologous end joining DNA repair pathway, promoting DNA repair via homologous recombination, important for the insertion of specific DNA edits.

Metabolic flux coupling

The interdependence of metabolic reaction rates within a network, whereby the flux through one reaction constrains or affects the flux through another. This coupling can arise from stoichiometric relationships, shared intermediates or regulatory mechanisms.

Microsatellite instability

(MSI). A condition characterized by the accumulation of insertion or deletion mutations in microsatellite regions of DNA, typically caused by defects in the mismatch repair system.

Paralogues

Genes that arise from a duplication event within the genome of a species.

PROTACtable

Proteins with features (ubiquitylation site, long half-life) that indicate that they may be suitable for degradation using proteolysis-targeting chimeras (PROTACS).

Saturation mutagenesis

A technique in molecular biology in which specific regions of a gene are systematically mutated to all possible variations.

Undruggable

Proteins currently not yet targetable with existing pharmacological strategies. Targets previously deemed undruggable, such as the oncoprotein KRAS, now have available inhibitors and so this category is continually evolving, especially as new modalities, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, expand the targetable proteome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, E., Ryan, C.J. & Adams, D.J. Synthetic lethality in cancer drug discovery: challenges and opportunities. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01273-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-025-01273-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer