Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PROTAC targeted protein degraders: the past is prologue

Abstract

Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mechanism of PROTAC-mediated targeted protein degradation.
Fig. 2: Modalities in targeted protein degradation.
Fig. 3: Timeline of PROTAC discoveries.
Fig. 4: The tenets of PROTAC targets.
Fig. 5: Example Cullin–RING ligases and their substrate adaptors.
Fig. 6: Specialized E3 ligases for potential PROTAC applications.

Similar content being viewed by others

References

  1. Surka, C. et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137, 661–677 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansen, J. D. et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J. Med. Chem. 63, 6648–6676 (2020).

    CAS  PubMed  Google Scholar 

  3. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    CAS  PubMed  Google Scholar 

  4. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    PubMed  Google Scholar 

  5. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523, 183–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  PubMed  Google Scholar 

  7. Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chamberlain, P. P. & Hamann, L. G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 15, 937–944 (2019).

    CAS  PubMed  Google Scholar 

  9. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma, R., Mohl, D. & Deshaies, R. J. Harnessing the power of proteolysis for targeted protein inactivation. Mol. Cell 77, 446–460 (2020).

    CAS  PubMed  Google Scholar 

  11. Nalawansha, D. A. & Crews, C. M. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 998–1014 (2020).

    CAS  PubMed  Google Scholar 

  12. Hanzl, A. & Winter, G. E. Targeted protein degradation: current and future challenges. Curr. Opin. Chem. Biol. 56, 35–41 (2020).

    CAS  PubMed  Google Scholar 

  13. Faust, T. B., Donovan, K. A., Yue, H., Chamberlain, P. P. & Fischer, E. S. Small-molecule approaches to targeted protein degradation. Annu. Rev. Cancer Biol. 5, 181–201 (2021).

    Google Scholar 

  14. Ciechanover, A., Orian, A. & Schwartz, A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451 (2000).

    CAS  PubMed  Google Scholar 

  15. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma, Y. et al. Targeted degradation of KRAS by an engineered ubiquitin ligase suppresses pancreatic cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 12, 286–294 (2013).

    CAS  PubMed  Google Scholar 

  17. Hatakeyama, S., Watanabe, M., Fujii, Y. & Nakayama, K. I. Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. Cancer Res. 65, 7874–7879 (2005).

    CAS  PubMed  Google Scholar 

  18. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    CAS  PubMed  Google Scholar 

  19. Min, J. H. et al. Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    CAS  PubMed  Google Scholar 

  20. Buckley, D. L. et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew. Chem. Int. Ed. Engl. 51, 11463–11467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Buckley, D. L. et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br. J. Haematol. 164, 811–821 (2014).

    CAS  PubMed  Google Scholar 

  25. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    PubMed  Google Scholar 

  26. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    CAS  PubMed  Google Scholar 

  27. Uehara, T. et al. Selective degradation of splicing factor CAPERalpha by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    CAS  PubMed  Google Scholar 

  28. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633 e1623 (2019).

    CAS  PubMed  Google Scholar 

  29. Ting, T. C. et al. Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep. 29, 1499–1510 e1496 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    CAS  PubMed  Google Scholar 

  31. Wu, T. et al. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 27, 605–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chamberlain, P. P. et al. Evolution of cereblon-mediated protein degradation as a therapeutic modality. ACS Med. Chem. Lett. 10, 1592–1602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salami, J. et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Neklesa, T. K., Winkler, J. D. & Crews, C. M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138–144 (2017).

    CAS  PubMed  Google Scholar 

  35. Flanagan, J. J. & Neklesa, T. K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell Endocrinol. 493, 110452 (2019).

    CAS  PubMed  Google Scholar 

  36. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. eLife 7, e38430 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. McDonnell, D. P., Wardell, S. E. & Norris, J. D. Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J. Med. Chem. 58, 4883–4887 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ariazi, E. A., Ariazi, J. L., Cordera, F. & Jordan, V. C. Estrogen receptors as therapeutic targets in breast cancer. Curr. Top. Med. Chem. 6, 181–202 (2006).

    CAS  PubMed  Google Scholar 

  40. Petrylak, D. P. et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J. Clin. Oncol. 38, 3500–3500 (2020).

    Google Scholar 

  41. Snyder, L. B. et al. The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. In Proc. 112th Annual Meeting of the American Association for Cancer Research 1116 (AACR, 2021).

  42. Luh, L. M. et al. Prey for the proteasome: targeted protein degradation-a medicinal chemist’s perspective. Angew. Chem. Int. Ed. Engl. 59, 15448–15466 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Samarasinghe, K. T. G. et al. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2021.03.011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Farnaby, W., Koegl, M., McConnell, D. B. & Ciulli, A. Transforming targeted cancer therapy with PROTACs: A forward-looking perspective. Curr. Opin. Pharmacol. 57, 175–183 (2021).

    CAS  PubMed  Google Scholar 

  45. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  PubMed  Google Scholar 

  46. Guharoy, M., Bhowmick, P., Sallam, M. & Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat. Commun. 7, 10239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis, C., Spaller, B. L. & Matouschek, A. Mechanisms of substrate recognition by the 26S proteasome. Curr. Opin. Struct. Biol. 67, 161–169 (2021).

    CAS  PubMed  Google Scholar 

  48. Mares, A. et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun. Biol. 3, 140 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87 e75 (2018).

    CAS  PubMed  Google Scholar 

  50. Alabi, S. et al. Mutant-selective degradation by BRAF-targeting PROTACs. Nat. Commun. 12, 920 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bensimon, A. et al. Targeted degradation of SLC transporters reveals amenability of multi-pass transmembrane proteins to ligand-induced proteolysis. Cell Chem. Biol. 27, 728–739 e729 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Y. et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorg. Chem. 111, 104833 (2021).

    CAS  PubMed  Google Scholar 

  55. Bond, M. J., Chu, L., Nalawansha, D. A., Li, K. & Crews, C. M. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ray, S. & Murkin, A. S. New electrophiles and strategies for mechanism-based and targeted covalent inhibitor design. Biochemistry 58, 5234–5244 (2019).

    CAS  PubMed  Google Scholar 

  58. Lossouarn, A., Renard, P. Y. & Sabot, C. Tailored bioorthogonal and bioconjugate chemistry: a source of inspiration for developing kinetic target-guided synthesis strategies. Bioconjug Chem. 32, 63–72 (2021).

    CAS  PubMed  Google Scholar 

  59. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    CAS  PubMed  Google Scholar 

  60. Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).

    CAS  PubMed  Google Scholar 

  61. Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

    CAS  PubMed  Google Scholar 

  62. Young, R. J. & Leeson, P. D. Mapping the efficiency and physicochemical trajectories of successful optimizations. J. Med. Chem. 61, 6421–6467 (2018).

    CAS  PubMed  Google Scholar 

  63. Scott, J. S. & Waring, M. J. Practical application of ligand efficiency metrics in lead optimisation. Bioorg. Med. Chem. 26, 3006–3015 (2018).

    CAS  PubMed  Google Scholar 

  64. Johnson, T. W., Gallego, R. A. & Edwards, M. P. Lipophilic efficiency as an important metric in drug design. J. Med. Chem. 61, 6401–6420 (2018).

    CAS  PubMed  Google Scholar 

  65. Han, X. et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J. Med. Chem. 64, 12831–12854 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Poongavanam, V. & Kihlberg, J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med. Chem. https://doi.org/10.4155/fmc-2021-0208 (2021).

    Article  PubMed  Google Scholar 

  67. Troup, R. I., Fallan, C. & Baud, M. G. J. Current strategies for the design of PROTAC linkers: a critical review. Explor. Target. Antitumor Ther. 1, 273–312 (2020).

    Google Scholar 

  68. Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

    CAS  PubMed  Google Scholar 

  69. Cyrus, K. et al. Impact of linker length on the activity of PROTACs. Mol. Biosyst. 7, 359–364 (2011).

    CAS  PubMed  Google Scholar 

  70. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021).

    CAS  PubMed  Google Scholar 

  71. Snyder, L. B. et al. Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer. In Proc. 112th Annual Meeting of the American Association for Cancer Research 1115 (AACR, 2021).

  72. Chamberlain, P. P. & Cathers, B. E. Cereblon modulators: low molecular weight inducers of protein degradation. Drug Discov. Today Technol. 31, 29–34 (2019).

    PubMed  Google Scholar 

  73. Matyskiela, M. E. et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem. 61, 535–542 (2018).

    CAS  PubMed  Google Scholar 

  74. Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532, 127–130 (2016).

    CAS  PubMed  Google Scholar 

  75. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  PubMed  Google Scholar 

  76. Ege, N., Bouguenina, H., Tatari, M. & Chopra, R. Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chem. Biol. 28, 283–299 (2021).

    CAS  PubMed  Google Scholar 

  77. He, Y. et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J. Hematol. Oncol. 13, 95 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Zhang, X. et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-XL. Chem. Commun. 55, 14765–14768 (2019).

    CAS  Google Scholar 

  79. Oh, E., Akopian, D. & Rape, M. Principles of ubiquitin-dependent signaling. Annu. Rev. Cell Dev. Biol. 34, 137–162 (2018).

    CAS  PubMed  Google Scholar 

  80. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug. Discov. 18, 949–963 (2019).

    CAS  PubMed  Google Scholar 

  81. Fukuoka, K. et al. Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest. New Drugs 19, 219–227 (2001).

    CAS  PubMed  Google Scholar 

  82. Owa, T. et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 42, 3789–3799 (1999).

    CAS  PubMed  Google Scholar 

  83. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    CAS  PubMed  Google Scholar 

  84. Lv, L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9, e59994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Slabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dieter, S. M. et al. Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Rep. 36, 109394 (2021).

    CAS  PubMed  Google Scholar 

  88. Asatsuma-Okumura, T., Ito, T. & Handa, H. Molecular mechanisms of cereblon-based drugs. Pharmacol. Ther. 202, 132–139 (2019).

    CAS  PubMed  Google Scholar 

  89. Nguyen, K. M. & Busino, L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin. Cancer Biol. 67, 53–60 (2020).

    CAS  PubMed  Google Scholar 

  90. Fang, Y., Liao, G. & Yu, B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm. Sin. B 10, 1253–1278 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Naito, M., Ohoka, N., Shibata, N. & Tsukumo, Y. Targeted protein degradation by chimeric small molecules, PROTACs and SNIPERs. Front. Chem. 7, 849 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Weng, G. et al. PROTAC-DB: an online database of PROTACs. Nucleic Acids Res. 49, D1381–D1387 (2021).

    CAS  PubMed  Google Scholar 

  93. Wang, Y., Jiang, X., Feng, F., Liu, W. & Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B 10, 207–238 (2020).

    CAS  PubMed  Google Scholar 

  94. Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Roth, S., Fulcher, L. J. & Sapkota, G. P. Advances in targeted degradation of endogenous proteins. Cell Mol. Life Sci. 76, 2761–2777 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Prozzillo, Y. et al. Targeted protein degradation tools: overview and future perspectives. Biology (Basel) 9, 421 (2020).

    CAS  Google Scholar 

  98. Pacini, C. et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 12, 1661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shirasaki, R. et al. Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins. Cell Rep. 34, 108532 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    PubMed  Google Scholar 

  101. Ottis, P. et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem. Biol. 14, 2215–2223 (2019).

    CAS  PubMed  Google Scholar 

  102. Gooding, S. et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 137, 232–237 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Barrio, S. et al. IKZF1/3 and CRL4(CRBN) E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma. Haematologica 105, e237–e241 (2020).

    PubMed  PubMed Central  Google Scholar 

  104. Zimmerman, E. S., Schulman, B. A. & Zheng, N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 20, 714–721 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Duda, D. M. et al. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 21, 257–264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Baek, K. et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Baek, K., Scott, D. C. & Schulman, B. A. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr. Opin. Struct. Biol. 67, 101–109 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    CAS  PubMed  Google Scholar 

  109. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  110. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    CAS  PubMed  Google Scholar 

  111. Liu, L. et al. UbiHub: a data hub for the explorers of ubiquitination pathways. Bioinformatics 35, 2882–2884 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, W. et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell 62, 121–136 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kamadurai, H. B. et al. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2, e00828 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Yuan, L., Lv, Z., Atkison, J. H. & Olsen, S. K. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat. Commun. 8, 211 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Dove, K. K. et al. Structural studies of HHARI/UbcH7~Ub reveal unique E2~Ub conformational restriction by RBR RING1. Structure 25, 890–900 e895 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Scott, D. C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214 e1124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 590, 671–676 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl. 55, 807–810 (2016).

    CAS  PubMed  Google Scholar 

  119. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589 e517 (2018).

    CAS  PubMed  Google Scholar 

  121. Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS  PubMed  Google Scholar 

  123. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    CAS  PubMed  Google Scholar 

  124. Zeng, M. et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem. Biol. 27, 19–31 e16 (2020).

    CAS  PubMed  Google Scholar 

  125. Huang, H. T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99 e86 (2018).

    CAS  PubMed  Google Scholar 

  126. Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731 e1710 (2020).

    CAS  PubMed  Google Scholar 

  127. Rodriguez-Rivera, F. P. & Levi, S. M. Unifying catalysis framework to dissect proteasomal degradation paradigms. ACS Cent. Sci. 7, 1117–1125 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hughes, S. J. & Ciulli, A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 61, 505–516 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Luo, M. et al. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem. Biol. 28, 559–566 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tong, B. et al. A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL. ACS Chem. Biol. 15, 1788–1794 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tong, B. et al. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 10, 15543 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wei, J. et al. Harnessing the E3 Ligase KEAP1 for targeted protein degradation. J. Am. Chem. Soc. 143, 15073–15083 (2021).

    CAS  PubMed  Google Scholar 

  138. Henning, N. J. et al. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. bioRxiv https://doi.org/10.1101/2021.04.15.439993 (2021).

    Article  Google Scholar 

  139. Ishida, T. & Ciulli, A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 26, 484–502 (2021).

    CAS  PubMed  Google Scholar 

  140. Ramachandran, S. & Ciulli, A. Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues. Curr. Opin. Struct. Biol. 67, 110–119 (2020).

    PubMed  Google Scholar 

  141. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Khan, S. et al. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene 39, 4909–4924 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. He, Y. et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J. Hematol. Oncol. 13, 103 (2020).

    PubMed  PubMed Central  Google Scholar 

  145. Ehrlich, K. C., Baribault, C. & Ehrlich, M. Epigenetics of muscle- and brain-specific expression of KLHL family genes. Int. J. Mol. Sci. 21, 8394 (2020).

    CAS  PubMed Central  Google Scholar 

  146. Gupta, V. A. et al. Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am. J. Hum. Genet. 93, 1108–1117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Garg, A. et al. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J. Clin. Invest. 124, 3529–3539 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, Q. Y., Lei, J. X., Sikorska, M. & Liu, R. A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer’s patients and targets ATP6V0C for degradation. Mol. Neurodegener. 3, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  149. Menon, S. et al. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol. Biol. Cell 32, 314–330 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kumanomidou, T. et al. The structural differences between a glycoprotein specific F-box protein Fbs1 and its homologous protein FBG3. PLoS ONE 10, e0140366 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Glenn, K. A., Nelson, R. F., Wen, H. M., Mallinger, A. J. & Paulson, H. L. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J. Biol. Chem. 283, 12717–12729 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, X. et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur. J. Med. Chem. 192, 112186 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wei, R. et al. Cancer testis antigens in sarcoma: expression, function and immunotherapeutic application. Cancer Lett. 479, 54–60 (2020).

    CAS  PubMed  Google Scholar 

  155. Weon, J. L. & Potts, P. R. The MAGE protein family and cancer. Curr. Opin. Cell Biol. 37, 1–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang, S. W. et al. A cancer-specific ubiquitin ligase drives mRNA alternative polyadenylation by ubiquitinating the mRNA 3′ end processing complex. Mol. Cell 77, 1206–1221 e1207 (2020).

    CAS  PubMed  Google Scholar 

  157. Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715–728 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee, A. K. & Potts, P. R. A comprehensive guide to the MAGE family of ubiquitin ligases. J. Mol. Biol. 429, 1114–1142 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Tacer, K. F. & Potts, P. R. Cellular and disease functions of the Prader-Willi syndrome gene MAGEL2. Biochem. J. 474, 2177–2190 (2017).

    CAS  PubMed  Google Scholar 

  160. Pillow, T. H. et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 15, 17–25 (2020).

    CAS  PubMed  Google Scholar 

  161. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J. Med. Chem. 64, 2576–2607 (2021).

    CAS  PubMed  Google Scholar 

  162. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 64, 2534–2575 (2021).

    CAS  PubMed  Google Scholar 

  163. Jan, M., Sperling, A. S. & Ebert, B. L. Cancer therapies based on targeted protein degradation — lessons learned with lenalidomide. Nat. Rev. Clin. Oncol. 18, 401–417 (2021).

    PubMed  PubMed Central  Google Scholar 

  164. Dobrovolsky, D. et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood 133, 952–961 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zarrin, A. A., Bao, K., Lupardus, P. & Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 20, 39–63 (2021).

    CAS  PubMed  Google Scholar 

  166. Schiemer, J. et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat. Chem. Biol. 17, 152–160 (2021).

    CAS  PubMed  Google Scholar 

  167. Zorba, A. et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl Acad. Sci. USA 115, E7285–E7292 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Tinworth, C. P. et al. PROTAC-mediated degradation of bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem. Biol. 14, 342–347 (2019).

    CAS  PubMed  Google Scholar 

  169. Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    CAS  PubMed  Google Scholar 

  170. Sun, Y. et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 28, 779–781 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wiese, M. D., Manning-Bennett, A. T. & Abuhelwa, A. Y. Investigational IRAK-4 inhibitors for the treatment of rheumatoid arthritis. Expert Opin. Investig. Drugs 29, 475–482 (2020).

    CAS  PubMed  Google Scholar 

  172. Qin, J., Jiang, Z., Qian, Y., Casanova, J. L. & Li, X. IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J. Biol. Chem. 279, 26748–26753 (2004).

    CAS  PubMed  Google Scholar 

  173. Zhang, J. et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation. Cell Chem. Biol. 27, 1500–1509 e1513 (2020).

    CAS  PubMed  Google Scholar 

  174. Nunes, J. et al. Targeting IRAK4 for degradation with PROTACs. ACS Med. Chem. Lett. 10, 1081–1085 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, Y. et al. Design, synthesis, and biological evaluation of IRAK4-targeting PROTACs. ACS Med. Chem. Lett. 12, 82–87 (2021).

    PubMed  Google Scholar 

  176. van der Zanden, S. Y., Luimstra, J. J., Neefjes, J., Borst, J. & Ovaa, H. Opportunities for small molecules in cancer immunotherapy. Trends Immunol. 41, 493–511 (2020).

    PubMed  Google Scholar 

  177. Kerr, W. G. & Chisholm, J. D. The next generation of immunotherapy for cancer: small molecules could make big waves. J. Immunol. 202, 11–19 (2019).

    CAS  PubMed  Google Scholar 

  178. Wang, Y., Deng, S. & Xu, J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biol. Med. 17, 583–598 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 e1915 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Si, J. et al. Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell 38, 551–566 e511 (2020).

    CAS  PubMed  Google Scholar 

  181. Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77 e63 (2018).

    CAS  PubMed  Google Scholar 

  182. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016).

    PubMed  Google Scholar 

  183. Goedert, M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 15, 45–49 (2004).

    CAS  PubMed  Google Scholar 

  184. Chang, C. W., Shao, E. & Mucke, L. Tau: enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 371, eabb8255 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. DeVos, S. L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9, eaag0481 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. Yiannopoulou, K. G. & Papageorgiou, S. G. Current and future treatments in Alzheimer disease: an update. J. Cent. Nerv. Syst. Dis. 12, 1179573520907397 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Wegmann, S. et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7, eabe1611 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    CAS  PubMed  Google Scholar 

  189. Wang, W. et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics 11, 5279–5295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Chien, D. T. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J. Alzheimers Dis. 34, 457–468 (2013).

    CAS  PubMed  Google Scholar 

  191. Silva, M. C. et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 8, e45457 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Kotzbauer, P. T., Trojanowsk, J. Q. & Lee, V. M. Lewy body pathology in Alzheimer’s disease. J. Mol. Neurosci. 17, 225–232 (2001).

    CAS  PubMed  Google Scholar 

  193. Qu, J. et al. Specific knockdown of alpha-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol. 27, 763 (2020).

    CAS  PubMed  Google Scholar 

  194. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Google Scholar 

  195. Sap, K. A. & Reits, E. A. Strategies to investigate ubiquitination in Huntington’s disease. Front. Chem. 8, 485 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 575, 203–209 (2019).

    CAS  PubMed  Google Scholar 

  197. Tomoshige, S., Nomura, S., Ohgane, K., Hashimoto, Y. & Ishikawa, M. Discovery of small molecules that induce the degradation of huntingtin. Angew. Chem. Int. Ed. Engl. 56, 11530–11533 (2017).

    CAS  PubMed  Google Scholar 

  198. de Wispelaere, M. et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10, 3468 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Martinez-Ortiz, W. & Zhou, M. M. Could PROTACs protect us from COVID-19? Drug Discov. Today 25, 1894–1896 (2020).

    CAS  PubMed Central  Google Scholar 

  201. Ghosh, A. K., Brindisi, M., Shahabi, D., Chapman, M. E. & Mesecar, A. D. Drug development and medicinal chemistry efforts toward SARS-coronavirus and Covid-19 therapeutics. ChemMedChem 15, 907–932 (2020).

    CAS  PubMed  Google Scholar 

  202. Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Boras, B. et al. Discovery of a novel inhibitor of coronavirus 3CL protease as a clinical candidate for the potential treatment of COVID-19. bioRxiv https://doi.org/10.1101/2020.09.12.293498 (2020).

    Article  Google Scholar 

  204. De Haan, P., Van Diemen, F. R. & Toscano, M. G. Viral gene delivery vectors: the next generation medicines for immune-related diseases. Hum. Vaccin. Immunother. 17, 14–21 (2021).

    PubMed  Google Scholar 

  205. Sung, Y. K. & Kim, S. W. Recent advances in the development of gene delivery systems. Biomater. Res. 23, 8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Ghosh, S., Brown, A. M., Jenkins, C. & Campbell, K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl. Biosaf. 25, 7–18 (2020).

    Google Scholar 

  207. Yang, K. C. et al. Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Deliv. Transl. Res. 11, 1420–1437 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Steinhauff, D. & Ghandehari, H. Matrix mediated viral gene delivery: a review. Bioconjug Chem. 30, 384–399 (2019).

    CAS  PubMed  Google Scholar 

  209. Editorial. Let’s talk about lipid nanoparticles. Nat. Rev. Mater. 6, 99 (2021).

    Google Scholar 

  210. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P. M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756 (2000).

    CAS  PubMed  Google Scholar 

  211. Li, X. et al. Degradation of HER2 by Cbl-based chimeric ubiquitin ligases. Cancer Res. 67, 8716–8724 (2007).

    CAS  PubMed  Google Scholar 

  212. Pan, T. et al. A recombinant chimeric protein specifically induces mutant KRAS degradation and potently inhibits pancreatic tumor growth. Oncotarget 7, 44299–44309 (2016).

    PubMed  PubMed Central  Google Scholar 

  213. Chu, T. T. et al. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol. 23, 453–461 (2016).

    CAS  PubMed  Google Scholar 

  214. Lim, S. et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc. Natl Acad. Sci. USA 117, 5791–5800 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Fulcher, L. J. et al. An affinity-directed protein missile system for targeted proteolysis. Open Biol. 6, 160255 (2016).

    PubMed  PubMed Central  Google Scholar 

  216. Saerens, D. et al. Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J. Mol. Biol. 352, 597–607 (2005).

    CAS  PubMed  Google Scholar 

  217. Caussinus, E., Kanca, O. & Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19, 117–121 (2011).

    PubMed  Google Scholar 

  218. Shin, Y. J. et al. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. Sci. Rep. 5, 14269 (2015).

    CAS  PubMed  Google Scholar 

  219. Lim, S. et al. Exquisitely specific anti-KRAS biodegraders inform on the cellular prevalence of nucleotide-loaded states. ACS Cent. Sci. 7, 274–291 (2021).

    CAS  PubMed  Google Scholar 

  220. Ghidini, A., Clery, A., Halloy, F., Allain, F. H. T. & Hall, J. RNA-PROTACs: Degraders of RNA-binding proteins. Angew. Chem. Int. Ed. Engl. 60, 3163–3169 (2021).

    CAS  PubMed  Google Scholar 

  221. Shao, J. et al. Destruction of DNA-binding proteins by programmable O’PROTAC: oligonucleotide-based PROTAC. bioRxiv https://doi.org/10.1101/2021.03.08.434493 (2021).

    Article  Google Scholar 

  222. Liu, J. et al. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 143, 8902–8910 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Angers, S. et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    CAS  PubMed  Google Scholar 

  224. Page, R. C. P., Amick, J. J. N., Klevit, R. E. & Misra, S. Structural Insights into the conformation and oligomerization of E2∼ubiquitin conjugates. Biochemistry 51, 4175–4187 (2012).

    CAS  PubMed  Google Scholar 

  225. Faull, S. V. et al. Structural basis of Cullin 2 RING E3 ligase regulation by the COP9 signalosome. Nat. Commun. 10, 3814 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Zhang, M. et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    CAS  PubMed  Google Scholar 

  227. Kiss, L. et al. A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases. Nat. Commun. 10, 4502 (2019).

    PubMed  PubMed Central  Google Scholar 

  228. Kannt, A. & Dikic, I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 28, 1014–1031 (2021).

    CAS  PubMed  Google Scholar 

  229. Jevtic, P., Haakonsen, D. L. & Rape, M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem. Biol. 28, 1000–1013 (2021).

    CAS  PubMed  Google Scholar 

  230. Chen, Y. N. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).

    CAS  PubMed  Google Scholar 

  231. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    CAS  PubMed  Google Scholar 

  232. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    CAS  PubMed  Google Scholar 

  233. Deshaies, R. J. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature 580, 329–338 (2020).

    CAS  PubMed  Google Scholar 

  234. Simonetta, K. R. et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 10, 1402 (2019).

    PubMed  PubMed Central  Google Scholar 

  235. Koduri, V. et al. Targeting oncoproteins with a positive selection assay for protein degraders. Sci. Adv. 7, eabd6263 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lou, Z. & Wang, S. E3 ubiquitin ligases and human papillomavirus-induced carcinogenesis. J. Int. Med. Res. 42, 247–260 (2014).

    PubMed  Google Scholar 

  237. Planelles, V. & Barker, E. Roles of Vpr and Vpx in modulating the virus-host cell relationship. Mol. Asp. Med. 31, 398–406 (2010).

    CAS  Google Scholar 

  238. Yan, J. et al. HIV-1 Vpr reprograms CLR4(DCAF1) E3 ubiquitin ligase to antagonize exonuclease 1-mediated restriction of HIV-1 infection. mBio 9, e01732-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  239. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    CAS  PubMed  Google Scholar 

  240. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl Acad. Sci. USA 101, 12381–12386 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    CAS  PubMed  Google Scholar 

  242. Larrieu, A. & Vernoux, T. Comparison of plant hormone signalling systems. Essays Biochem. 58, 165–181 (2015).

    PubMed  Google Scholar 

  243. Guo, Y. et al. Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505, 229–233 (2014).

    CAS  PubMed  Google Scholar 

  244. Wu, Y. et al. The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat. Struct. Mol. Biol. 23, 933–940 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Martinez-Zapien, D. et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Ding, Y., Fei, Y. & Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci. 41, 464–474 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Kastl, J. M., Davies, G., Godsman, E. & Holdgate, G. A. Small-molecule degraders beyond PROTACs-challenges and opportunities. SLAS Discov. 26, 524–533 (2021).

    CAS  PubMed  Google Scholar 

  248. Alabi, S. & Crews, C. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296, 100647 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810 e710 (2019).

    CAS  PubMed  Google Scholar 

  250. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.M.C. is funded by the NIH (R35CA197589) and supported by an American Cancer Research Professorship. The authors thank A. Cacace and I. Taylor for critical reading of the manuscript; M. J. Haas for providing editorial support; and the reviewers for their supportive comments during finalization of the manuscript. PROTAC is a registered trademark of Arvinas Operations, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miklós Békés, David R. Langley or Craig M. Crews.

Ethics declarations

Competing interests

C.M.C. is a consultant and shareholder in Arvinas, Inc. and Halda Therapeutics, which support research in his lab. M.B. and D.R.L. are employees and shareholders of Arvinas, Inc, which is developing drug candidates in the targeted protein degradation space.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks John Harling, Darryl McConnell and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Event-driven pharmacology

This refers to the mechanism of action of a small-molecule drug, whereby its function is transiently recruited to a target protein in a catalytic manner (for example, ubiquitylation by an E3 ligase recruited by a proteolysis-targeting chimera (PROTAC)), resulting in a pharmacological effect (degradation of the protein) that drives a phenotype. This contrasts with occupancy-driven pharmacology, whereby the function of a target protein is directly blocked by a small-molecule inhibitor.

Therapeutic window

The dosage (a range of concentrations) of a drug that provides efficacious therapy and is safe (without toxic side effects).

Scaffolding proteins

Proteins that may not have an enzymatic function on their own, but serve as protein–protein interaction hubs to recruit and orient signalling complexes.

dTAG system

An allele-specific tagging system that uses a protein of interest (POI) fused to a FKBP12(F36V) construct that allows specific degradation of the fused POI via an FKBP12(F36V) binder linked to a cereblon (CRBN) or a von Hippel–Lindau (VHL) ligand.

Bio-orthogonal chemistry

A chemical reaction that occurs inside a living organism without altering its biology.

Rule of 5

A set of physicochemical property guidelines for small molecules that indicate the likelihood of a small molecule being orally bioavailable in humans. It is more of a rule of thumb than an absolute rule, and many approved drugs fall outside the rule of 5.

Protein half-life

The time required for the amount or concentration of a protein to be reduced by 50% under physiological conditions. It is a measure of the propensity of a protein to be degraded by the ubiquitin–proteasome system (UPS). Proteins with short half-lives are rapidly degraded by the UPS (constantly being turned over), whereas proteins with long half-lives are more stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Békés, M., Langley, D.R. & Crews, C.M. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 21, 181–200 (2022). https://doi.org/10.1038/s41573-021-00371-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-021-00371-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research