Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin

A Corrigendum to this article was published on 01 January 2006

This article has been updated

Abstract

Two seemingly unrelated hallmarks of memory CD8+ T cells are cytokine-driven proliferative renewal after pathogen clearance and a latent effector program in anticipation of rechallenge. Memory CD8+ T cells and natural killer cells share cytotoxic potential and dependence on the growth factor interleukin 15. We now show that mice with compound mutations of the genes encoding the transcription factors T-bet and eomesodermin were nearly devoid of several lineages dependent on interleukin 15, including memory CD8+ T cells and mature natural killer cells, and that their cells had defective cytotoxic effector programming. Moreover, T-bet and eomesodermin were responsible for inducing enhanced expression of CD122, the receptor specifying interleukin 15 responsiveness. Therefore, these key transcription factors link the long-term renewal of memory CD8+ T cells to their characteristic effector potency.

*Note: In the version of this article initially published online, the third sentence of the abstract was incorrect. The correct sentence is as follows: “We now show that mice with compound mutations of the genes encoding the transcription factors T-bet and eomesodermin were nearly devoid of several lineages dependent on interleukin 15, including memory CD8+ T cells and mature natural killer cells, and that their cells had defective cytotoxic effector programming.” The error has been corrected for the HTML and print versions of the article. Additionally, in the print version of this article and the version initially published online, some labels for Tbx21 in Figure 7b are incorrect. This correction has been appended to the PDF version.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eomes+/−Tbx21−/− mice have considerable depletion of IL-15-dependent lineages.
Figure 2: Eomes and T-bet are expressed in IL-15-dependent lineages.
Figure 3: T-box factors coincide with CD122 and IL-15 responsiveness.
Figure 4: Eomes and T-bet are necessary for the induction and maintenance of the CD122hi state.
Figure 5: Eomes and T-bet are sufficient to induce the CD122hi state.
Figure 6: Il2rb is a direct 'target' of Eomes.
Figure 7: Eomes and T-bet coordinate effector function in parallel with their coordination of IL-15 responsiveness.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Change history

  • 13 November 2005

    Sentence in abstract changed. Also figure 7b.

References

  1. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  2. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  Google Scholar 

  3. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  Google Scholar 

  4. Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M. & Glimcher, L.H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. USA 100, 15818–15823 (2003).

    Article  CAS  Google Scholar 

  5. Juedes, A.E., Rodrigo, E., Togher, L., Glimcher, L.H. & von Herrath, M.G. T-bet controls autoaggressive CD8 lymphocyte responses in type 1 diabetes. J. Exp. Med. 199, 1153–1162 (2004).

    Article  CAS  Google Scholar 

  6. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  7. Svensson, A., Nordstrom, I., Sun, J.B. & Eriksson, K. Protective immunity to genital herpes simpex virus type 2 infection is mediated by T-bet. J. Immunol. 174, 6266–6273 (2005).

    Article  CAS  Google Scholar 

  8. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  Google Scholar 

  9. Way, S.S. & Wilson, C.B. Cutting edge: immunity and IFN-γ production during Listeria monocytogenes infection in the absence of T-bet. J. Immunol. 173, 5918–5922 (2004).

    Article  CAS  Google Scholar 

  10. Russ, A.P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  Google Scholar 

  11. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  12. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  13. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  Google Scholar 

  14. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  15. Judge, A.D., Zhang, X., Fujii, H., Surh, C.D. & Sprent, J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med. 196, 935–946 (2002).

    Article  CAS  Google Scholar 

  16. Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  Google Scholar 

  17. Burkett, P.R. et al. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J. Exp. Med. 200, 825–834 (2004).

    Article  CAS  Google Scholar 

  18. Schluns, K.S., Klonowski, K.D. & Lefrancois, L. Transregulation of memory CD8 T-cell proliferation by IL-15Rα+ bone marrow-derived cells. Blood 103, 988–994 (2004).

    Article  CAS  Google Scholar 

  19. Burkett, P.R. et al. IL-15R α expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl. Acad. Sci. USA 100, 4724–4729 (2003).

    Article  CAS  Google Scholar 

  20. Koka, R. et al. Interleukin (IL)-15Rα-deficient natural killer cells survive in normal but not IL-15Rα-deficient mice. J. Exp. Med. 197, 977–984 (2003).

    Article  CAS  Google Scholar 

  21. Sandau, M.M., Schluns, K.S., Lefrancois, L. & Jameson, S.C. Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15Rα by the same cells. J. Immunol. 173, 6537–6541 (2004).

    Article  CAS  Google Scholar 

  22. Han, K. & Manley, J.L. Functional domains of the Drosophila Engrailed protein. EMBO J. 12, 2723–2733 (1993).

    Article  CAS  Google Scholar 

  23. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J.B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).

    Article  CAS  Google Scholar 

  24. Lin, J.X., Bhat, N.K., John, S., Queale, W.S. & Leonard, W.J. Characterization of the human interleukin-2 receptor β-chain gene promoter: regulation of promoter activity by ets gene products. Mol. Cell. Biol. 13, 6201–6210 (1993).

    Article  CAS  Google Scholar 

  25. Conlon, F.L., Fairclough, L., Price, B.M., Casey, E.S. & Smith, J.C. Determinants of T box protein specificity. Development 128, 3749–3758 (2001).

    CAS  PubMed  Google Scholar 

  26. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4–VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  Google Scholar 

  27. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  28. Mullen, A.C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nat. Immunol. 3, 652–658 (2002).

    Article  CAS  Google Scholar 

  29. Usui, T., Nishikomori, R., Kitani, A. & Strober, W. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rβ2 chain or T-bet. Immunity 18, 415–428 (2003).

    Article  CAS  Google Scholar 

  30. Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article  CAS  Google Scholar 

  31. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  32. Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  33. Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  Google Scholar 

  34. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  Google Scholar 

  35. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  Google Scholar 

  36. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  37. Goldrath, A.W., Luckey, C.J., Park, R., Benoist, C. & Mathis, D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc. Natl. Acad. Sci. USA 101, 16885–16890 (2004).

    Article  CAS  Google Scholar 

  38. Sun, J.C., Williams, M.A. & Bevan, M.J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5, 927–933 (2004).

    Article  CAS  Google Scholar 

  39. Wherry, E.J., Barber, D.L., Kaech, S.M., Blattman, J.N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl. Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  Google Scholar 

  40. Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  Google Scholar 

  41. Marzo, A.L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6, 793–799 (2005).

    Article  CAS  Google Scholar 

  42. Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  Google Scholar 

  43. Goldrath, A.W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    Article  CAS  Google Scholar 

  44. Schluns, K.S., Williams, K., Ma, A., Zheng, X.X. & Lefrancois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002).

    Article  CAS  Google Scholar 

  45. Latner, D.R., Kaech, S.M. & Ahmed, R. Enhanced expression of cell cycle regulatory genes in virus-specific memory CD8+ T cells. J. Virol. 78, 10953–10959 (2004).

    Article  CAS  Google Scholar 

  46. Veiga-Fernandes, H. & Rocha, B. High expression of active CDK6 in the cytoplasm of CD8 memory cells favors rapid division. Nat. Immunol. 5, 31–37 (2004).

    Article  CAS  Google Scholar 

  47. Li, Y., Zhi, W., Wareski, P. & Weng, N.P. IL-15 activates telomerase and minimizes telomere loss and may preserve the replicative life span of memory CD8+ T cells in vitro. J. Immunol. 174, 4019–4024 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Allenspach, A. Banerjee, M. Bogumil, T. Bui, J. Chang, C. DiCioccio, M. Gohil, I. Kinjyo, E. Meyers, Y. Ohtani, F. Schambach and J. Stundon for assistance and discussion; D. Garalde-Intlekofer for support. Supported by the National Institutes of Health (AI042370, AI061699 and AI007532) and the Abramson Family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L Reiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Intermediate NK and NKT cell defects in mice with less severe mutations of Tbx21 and Eomes. (PDF 261 kb)

Supplementary Fig. 2

Eomes and T-bet are expressed in endogenous memory CD8+ T cells that arise after viral infection. (PDF 131 kb)

Supplementary Fig. 3

Distinguishing basal CD122 expression from the CD122hi state among CD8+ cells. (PDF 95 kb)

Supplementary Fig. 4

IL-15 signaling is not required for enhanced induction of CD122. (PDF 119 kb)

Supplementary Fig. 5

T-bet and Eomes expression correlates with cytolytic effector molecule expression in human CD8+ cells. (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Intlekofer, A., Takemoto, N., Wherry, E. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6, 1236–1244 (2005). https://doi.org/10.1038/ni1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing