Nature Immunology Nature Immunology, ranked first out of more than 100 primary immunology research journals, brings together the most significant immunology research from every discipline. Nature Immunology’s scope is broad, covering all areas of immunology, including (but not limited to) innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity and tumor immunology, microbial immunopathology and transplantation. By presenting research that provides fundamental insight into the working of the immune system, Nature Immunology communicates the most significant and influential advances to a broad audience. http://feeds.nature.com/ni/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Immunology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Immunology https://www.nature.com/uploads/product/ni/rss.gif http://feeds.nature.com/ni/rss/current <![CDATA[Peanut allergy oral immunotherapy drives single-cell multi-omic changes in peanut-reactive T cells associated with sustained unresponsiveness]]> https://www.nature.com/articles/s41590-025-02323-3 <![CDATA[

    Nature Immunology, Published online: 04 November 2025; doi:10.1038/s41590-025-02323-3

    Peanut oral immunotherapy reshapes T cell responses, suppressing allergy-associated type 2 helper T cells and boosting cytotoxic type 1 helper T cells, offering clues to long-term tolerance.]]> <![CDATA[Peanut allergy oral immunotherapy drives single-cell multi-omic changes in peanut-reactive T cells associated with sustained unresponsiveness]]> Xiaorui HanValeria SkatovaArtem MikelovXuhuai JiRamona A. HohJi-Yeun LeeShu CaoHana SeastedtJackson SchuetzAndrea FernandesArpita SinghalFabian GrubertRosemarie H. DeKruyffHolden T. MaeckerStephen J. GalliMonali ManoharR. Sharon ChinthrajahMaya M. KasowskiScott D. BoydKari C. Nadeau doi:10.1038/s41590-025-02323-3 Nature Immunology, Published online: 2025-11-04; | doi:10.1038/s41590-025-02323-3 2025-11-04 Nature Immunology 10.1038/s41590-025-02323-3 https://www.nature.com/articles/s41590-025-02323-3 <![CDATA[ILC2s in the nerves]]> https://www.nature.com/articles/s41590-025-02340-2 <![CDATA[

    Nature Immunology, Published online: 29 October 2025; doi:10.1038/s41590-025-02340-2

    ILC2s in the nerves]]>
    <![CDATA[ILC2s in the nerves]]> Ioana Staicu doi:10.1038/s41590-025-02340-2 Nature Immunology, Published online: 2025-10-29; | doi:10.1038/s41590-025-02340-2 2025-10-29 Nature Immunology 10.1038/s41590-025-02340-2 https://www.nature.com/articles/s41590-025-02340-2
    <![CDATA[Proteostasis linked to exhaustion]]> https://www.nature.com/articles/s41590-025-02339-9 <![CDATA[

    Nature Immunology, Published online: 29 October 2025; doi:10.1038/s41590-025-02339-9

    Proteostasis linked to exhaustion]]>
    <![CDATA[Proteostasis linked to exhaustion]]> Nicholas J. Bernard doi:10.1038/s41590-025-02339-9 Nature Immunology, Published online: 2025-10-29; | doi:10.1038/s41590-025-02339-9 2025-10-29 Nature Immunology 10.1038/s41590-025-02339-9 https://www.nature.com/articles/s41590-025-02339-9
    <![CDATA[Microbiota reprogramming of macrophages]]> https://www.nature.com/articles/s41590-025-02338-w <![CDATA[

    Nature Immunology, Published online: 29 October 2025; doi:10.1038/s41590-025-02338-w

    Microbiota reprogramming of macrophages]]>
    <![CDATA[Microbiota reprogramming of macrophages]]> Paula Jáuregui doi:10.1038/s41590-025-02338-w Nature Immunology, Published online: 2025-10-29; | doi:10.1038/s41590-025-02338-w 2025-10-29 Nature Immunology 10.1038/s41590-025-02338-w https://www.nature.com/articles/s41590-025-02338-w
    <![CDATA[Cancer suppresses mitochondrial chaperone activity in macrophages to drive immune evasion]]> https://www.nature.com/articles/s41590-025-02324-2 <![CDATA[

    Nature Immunology, Published online: 29 October 2025; doi:10.1038/s41590-025-02324-2

    Huang and colleagues report that TIM4–AMPK signaling induces downregulation of the mitochondrial HSP90 chaperone TRAP1 in tumor-associated macrophages, thereby enhancing their immunoinhibitory function and promoting immune evasion and tumorigenesis.]]>
    <![CDATA[Cancer suppresses mitochondrial chaperone activity in macrophages to drive immune evasion]]> Haoxin ZhaoJaeoh ParkYuzhu WangYi-Ju ChouLemin LiLydia N. RainesMichael HsuChing-Cheng LinWei CaoYuli OuyangHeng-Yi ChenLinghua ZhengZihai LiAlex Y. HuangPing-Chih HoChan-Wang Jerry LioStanley Ching-Cheng Huang doi:10.1038/s41590-025-02324-2 Nature Immunology, Published online: 2025-10-29; | doi:10.1038/s41590-025-02324-2 2025-10-29 Nature Immunology 10.1038/s41590-025-02324-2 https://www.nature.com/articles/s41590-025-02324-2
    <![CDATA[Acute hypoxia drives long-term dysfunctional neutrophil immunity]]> https://www.nature.com/articles/s41590-025-02335-z <![CDATA[

    Nature Immunology, Published online: 28 October 2025; doi:10.1038/s41590-025-02335-z

    Systemic hypoxia is sufficient to induce persistent neutrophil dysfunction in humans, months after acute respiratory distress syndrome or high-altitude conditions. This dysfunction is mediated by loss of the histone modification H3K4me3. In hypoxic mouse models, we show that this reduction in H3K4me3 originates in neutrophil progenitor populations and is a consequence of histone 3 clipping.]]>
    <![CDATA[Acute hypoxia drives long-term dysfunctional neutrophil immunity]]> doi:10.1038/s41590-025-02335-z Nature Immunology, Published online: 2025-10-28; | doi:10.1038/s41590-025-02335-z 2025-10-28 Nature Immunology 10.1038/s41590-025-02335-z https://www.nature.com/articles/s41590-025-02335-z
    <![CDATA[Hypoxia induces histone clipping and H3K4me3 loss in neutrophil progenitors resulting in long-term impairment of neutrophil immunity]]> https://www.nature.com/articles/s41590-025-02301-9 <![CDATA[

    Nature Immunology, Published online: 28 October 2025; doi:10.1038/s41590-025-02301-9

    Walmsley and colleagues report that systemic hypoxia induces persistent loss of histone H3K4me3 marks and epigenetic reprogramming in neutrophil progenitors, resulting in long-term impairment of subsequent neutrophil effector functions.]]>
    <![CDATA[Hypoxia induces histone clipping and H3K4me3 loss in neutrophil progenitors resulting in long-term impairment of neutrophil immunity]]> Manuel A. Sanchez-GarciaPranvera SadikuBrian M. OrtmannNiek WitYutaka NegishiPatricia CoelhoAiliang ZhangChinmayi PednekarAndrew J. M. HowdenDavid M. GriffithRachel SeearJessica D. KindrickJanine MengedeGeorge CooperTyler MorrisonEmily R. WattsBenjamin T. ShimeldLeila ReyesAnanda S. MirchandaniSimone ArientiXiang XuAlexander ThomsonAlejandro J. BrenesHelena A. TurtonRebecca DoweyRebecca C. HullHazel Davidson-SmithAmy McLarenAndrew DeansGourab ChoudhuryKatherine DovermanDavid HopeOliver VickAlastair WoodheadIsla PetrieSuzanne GreenNina M. RzechorzekLance TurtlePeter J. M. OpenshawMalcolm G. SempleDuncan SproulJ. Kenneth BaillieAlfred A. R. ThompsonDavid R. MoleAlex von KriegsheimMoira K. B. WhyteMusa M. MhalangaJames A. NathanSarah R. Walmsley doi:10.1038/s41590-025-02301-9 Nature Immunology, Published online: 2025-10-28; | doi:10.1038/s41590-025-02301-9 2025-10-28 Nature Immunology 10.1038/s41590-025-02301-9 https://www.nature.com/articles/s41590-025-02301-9
    <![CDATA[Transcriptional regulator SATB1 limits CD8<sup>+</sup> T cell population expansion and effector differentiation in chronic infection and cancer]]> https://www.nature.com/articles/s41590-025-02316-2 <![CDATA[

    Nature Immunology, Published online: 27 October 2025; doi:10.1038/s41590-025-02316-2

    Kallies and colleagues examine the role of the chromatin regulator SATB1 in CD8⁺ T cell differentiation during viral infection and cancer. They show that SATB1 is a negative regulator of exhausted CD8⁺ T cell expansion and effector differentiation.]]>
    <![CDATA[Transcriptional regulator SATB1 limits CD8<sup>+</sup> T cell population expansion and effector differentiation in chronic infection and cancer]]> Leonie HeydenLisa RauschMichael H. ShannonLachlan DryburghMarcela L. MoreiraAleksej FrolovChristina M. SchefflerMarit J. van ElsasJunming TongOlivia HidajatSharanya K. M. WijesingheSining LiHelena HorvaticNhat Truong Huynh-AnhCatarina Gago da GraçaCarlson TsuiMaren KöhneDaniel SommerF. Thomas WunderlichBianca von ScheidtSimone L. ParkLaura K. MackayDaniel T. UtzschneiderJan SchröderStephen J. TurnerPhillip K. DarcyMarc D. BeyerZeinab AbdullahAxel Kallies doi:10.1038/s41590-025-02316-2 Nature Immunology, Published online: 2025-10-27; | doi:10.1038/s41590-025-02316-2 2025-10-27 Nature Immunology 10.1038/s41590-025-02316-2 https://www.nature.com/articles/s41590-025-02316-2