Abstract
BNIP3 and NIX are proteins related to the BH3-only family, which induce both cell death and autophagy. Consistent with their ability to induce cell death, BNIP3 and NIX are implicated in the pathogenesis of cancer and heart disease. In tumor cells, BNIP3 and NIX are regulated by hypoxia, and the deregulation of BNIP3 or NIX expression is associated with tumor growth. In heart muscle, BNIP3 and NIX are regulated by hypoxia and Gαq-dependent signaling, respectively, and their expression is associated with decreased myocardial function. Apart from their role in cell death, BNIP3 and NIX are also implicated in the induction of autophagy. In erythroid cells, NIX is required for a specialized type of autophagy that targets mitochondria for elimination (mitophagy). Similarly, BNIP3 regulates mitophagy in response to hypoxia. In this review, we will discuss possible mechanisms by which BNIP3 and NIX induce cell death and mitophagy. We will also consider the potential relationship between cell death pathways and autophagy in development and homeostasis.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- Atg1:
-
autophagy-related 1
- BNIP3:
-
BCL2 and adenovirus E1B 19 kDa-interacting protein 3
- LC3:
-
microtubule-associated protein 1 light chain 3
- MPTP:
-
mitochondrial permeability transition pore
- NIX:
-
NIP3-like protein X
- ULK1:
-
Unc51-like kinase
References
Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al. Adenovirus E1B 19âkDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 1994; 79: 341â351.
Takemori N, Riggs JL, Aldrich C . Genetic studies with tumorigenic adenoviruses. I. Isolation of cytocidal (cyt) mutants of adenovirus type 12. Virology 1968; 36: 575â586.
Takemori N, Cladaras C, Bhat B, Conley AJ, Wold WS . cyt gene of adenoviruses 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19â000-molecular-weight polypeptide. J Virol 1984; 52: 793â805.
Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E . The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 1992; 89: 7742â7746.
Subramanian T, Boyd JM, Chinnadurai G . Functional substitution identifies a cell survival promoting domain common to adenovirus E1B 19âkDa and Bcl-2 proteins. Oncogene 1995; 11: 2403â2409.
Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997; 186: 1975â1983.
Yasuda M, Theodorakis P, Subramanian T, Chinnadurai G . Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 1998; 273: 12415â12421.
Ray R, Chen G, Vande VC, Cizeau J, Park JH, Reed JC et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 2000; 275: 1439â1448.
Oberstein A, Jeffrey PD, Shi Y . Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 2007; 282: 13123â13132.
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927â939.
Aouacheria A, Brunet F, Gouy M . Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol 2005; 22: 2395â2416.
Yasuda M, Sa-Eipper C, Gong XL, Chinnadurai G . Regulation of apoptosis by a Caenorhabditis elegans BNIP3 homolog. Oncogene 1998; 17: 2525â2530.
Cizeau J, Ray R, Chen G, Gietz RD, Greenberg AH . The C. elegans orthologue ceBNIP3 interacts with CED-9 and CED-3 but kills through a BH3- and caspase-independent mechanism. Oncogene 2000; 19: 5453â5463.
Matsushima M, Fujiwara T, Takahashi E, Minaguchi T, Eguchi Y, Tsujimoto Y et al. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes. Cancer 1998; 21: 230â235.
Imazu T, Shimizu S, Tagami S, Matsushima M, Nakamura Y, Miki T et al. Bcl-2/E1B 19âkDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 1999; 18: 4523â4529.
Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K et al. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ 1999; 6: 314â325.
Chen G, Cizeau J, Vande VC, Park JH, Bozek G, Bolton J et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 1999; 274: 7â10.
Bruick RK . Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 9082â9087.
Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL . HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 2001; 61: 6669â6673.
Burton TR, Gibson SB . The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 2009, advance online publication 9 January 2009, doi:10.1038/cdd.2008.185, Review.
Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 2004; 6: 597â609.
Okami J, Simeone DM, Logsdon CD . Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 2004; 64: 5338â5346.
Lai J, Flanagan J, Phillips WA, Chenevix-Trench G, Arnold J . Analysis of the candidate 8p21 tumour suppressor, BNIP3L, in breast and ovarian cancer. Br J Cancer 2003; 88: 270â276.
Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 2001; 8: 367â376.
Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA . Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 2002; 99: 12825â12830.
Regula KM, Ens K, Kirshenbaum LA . Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 2002; 91: 226â231.
Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007; 117: 2825â2833.
Galvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA et al. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 2006; 281: 1442â1448.
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 2002; 8: 725â730.
Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn II GW . Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 2008; 117: 396â404.
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 2000; 20: 5454â5468.
Kim JY, Cho JJ, Ha J, Park JH . The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Arch Biochem Biophys 2002; 398: 147â152.
Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT et al. Unrestrained erythroblast development in Nixâ/â mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 2007; 104: 6794â6799.
Kubli DA, Ycaza JE, Gustafsson AB . Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J 2007; 405: 407â415.
Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 2006; 8: 1348â1358.
Shimizu S, Tsujimoto Y . Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci USA 2000; 97: 577â582.
Kelekar A, Thompson CB . Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 1998; 8: 324â330.
Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Brown JH et al. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest 2009; 119: 203â212.
Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 2000; 97: 5723â5728.
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135â139.
Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002; 277: 9219â9225.
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434: 658â662.
Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HL et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281: 2027â2031.
Sulistijo ES, Jaszewski TM, MacKenzie KR . Sequence-specific dimerization of the transmembrane domain of the âBH3-onlyâ protein BNIP3 in membranes and detergent. J Biol Chem 2003; 278: 51950â51956.
Sulistijo ES, MacKenzie KR . Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions. J Mol Biol 2006; 364: 974â990.
Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS et al. Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 2007; 282: 16256â16266.
Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU . Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA 2005; 102: 14278â14283.
Frazier DP, Wilson A, Graham RM, Thompson JW, Bishopric NH, Webster KA . Acidosis regulates the stability, hydrophobicity, and activity of the BH3-only protein Bnip3. Antioxid Redox Signal 2006; 8: 1625â1634.
Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB . Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2008; 295: H2025âH2031.
Clark Jr SL . Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol 1957; 3: 349â362.
Ashford TP, PORTER KR . Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962; 12: 198â202.
Yorimitsu T, Klionsky DJ . Autophagy: molecular machinery for self-eating. Cell Death Differ 2005; 12 (Suppl 2): 1542â1552.
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809â1820.
Yue Z, Jin S, Yang C, Levine AJ, Heintz N . Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100: 15077â15082.
Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH . Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003; 278: 17636â17645.
Cecconi F, Levine B . The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15: 344â357.
Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 2004; 64: 4286â4293.
Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S . Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2005; 24: 980â991.
Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007; 14: 146â157.
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27: 6229â6242.
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6: 458â471.
Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL . The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 2003; 102: 712â717.
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500â19505.
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493â1502.
Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 2007; 117: 2133â2144.
Bakker WJ, Blazquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H et al. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 2004; 164: 175â184.
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454: 232â235.
Waugh RE, McKenney JB, Bauserman RG, Brooks DM, Valeri CR, Snyder LM . Surface area and volume changes during maturation of reticulocytes in the circulation of the baboon. J Lab Clin Med 1997; 129: 527â535.
Chasis JA, Prenant M, Leung A, Mohandas N . Membrane assembly and remodeling during reticulocyte maturation. Blood 1989; 74: 1112â1120.
Gronowicz G, Swift H, Steck TL . Maturation of the reticulocyte in vitro. J Cell Sci 1984; 71: 177â197.
Koury MJ, Koury ST, Kopsombut P, Bondurant MC . In vitro maturation of nascent reticulocytes to erythrocytes. Blood 2005; 105: 2168â2174.
Heynen MJ, Tricot G, Verwilghen RL . Autophagy of mitochondria in rat bone marrow erythroid cells. Relation to nuclear extrusion. Cell Tissue Res 1985; 239: 235â239.
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892â10903.
Elmore SP, Qian T, Grissom SF, Lemasters JJ . The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001; 15: 2286â2287.
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008; 27: 433â446.
Kim I, Rodriguez-Enriquez S, Lemasters JJ . Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462: 245â253.
Zhang J, Ney PA . NIX induces mitochondrial autophagy in reticulocytes. Autophagy 2008; 4: 354â356.
van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389â399.
Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72: 8586â8596.
Feng W, Huang S, Wu H, Zhang M . Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 2007; 372: 223â235.
Maiuri MC, Le TG, Criollo A, Rain JC, Gautier F, Juin P et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007; 26: 2527â2539.
Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009; 16: 87â93.
Acknowledgements
This research was supported by a grant from the National Institutes of Health to PAN (R21 DK074519), and by the American, Lebanese, and Syrian Associated Charities.
Author information
Authors and Affiliations
Corresponding author
Additional information
Edited by M Piacentini
Rights and permissions
About this article
Cite this article
Zhang, J., Ney, P. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939â946 (2009). https://doi.org/10.1038/cdd.2009.16
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/cdd.2009.16
Keywords
This article is cited by
-
The human OPA1delTTAG mutation induces adult onset and progressive auditory neuropathy in mice
Cellular and Molecular Life Sciences (2024)
-
The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells
Parasites & Vectors (2023)
-
Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer
Journal of Translational Medicine (2023)
-
Impaired mitophagy induces antimicrobial responses in macrophages infected with Mycobacterium tuberculosis
Cell & Bioscience (2023)
-
Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca2+ release
Experimental & Molecular Medicine (2023)


