Abstract
With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function1. As elementary constituents of cellular protein complexes and pathways, proteinâprotein interactions are key determinants of protein function. Here we have built a large-scale proteinâprotein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides2. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single proteinâprotein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Fields, S. The future is function. Nature Genet. 15, 325â327 (1997).
Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277â282 (1997).
Bartel, P. L., Roecklein, J. A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet. 12, 72â77 (1996).
Flajolet, M. et al. A genomic approach of the hepatitis C virus generates a protein interaction map. Gene 242, 369â 379 (2000).
McCraith, S., Holtzman, T., Moss, B. & Fields, S. Genome-wide analysis of vaccinia virus proteinâprotein interactions. Proc. Natl Acad. Sci. USA 97, 4879â4884 (2000).
Ito, T. et al. Toward a proteinâprotein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143â1147 ( 2000).
Uetz, P. et al. A comprehensive analysis of proteinâprotein interactions in Saccharomyces cerevisiae. Nature 403, 623â627 (2000).
Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116â122 (2000).
Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539â 547 (1997).
Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45â48 ( 2000).
Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176â180 (1999).
Moszer, I. The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis. FEBS Lett. 430, 28â36 (1998).
Welch, M., Chinardet, N., Mourey, L., Birck, C. & Samama, J. P. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nature Struct. Biol. 5, 25â29 ( 1998).
Cussac, V., Ferrero, R. L. & Labigne, A. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174, 2466â2473 (1992).
Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451â480 (1995).
Skouloubris, S., Thiberge, J. M., Labigne, A. & De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun. 66, 4517â4521 ( 1998).
Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastritic colonization. Science 287 , 482â485 (2000).
Dong, Z., Onrust, R., Skangalis, M. & O'Donnell, M. DNA polymerase III accessory proteins. I. holA and holB encoding delta and deltaâ². J. Biol. Chem. 268, 11758â 11765 (1993).
Liu, X. & Matsumura, P. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164, 81â84 ( 1995).
Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811â 824 (1999).
Mooney, R. A. & Landick, R. RNA polymerase unveiled. Cell 98, 687â690 ( 1999).
Vidal, M. & Legrain, P. Yeast forward and reverse ânâ-hybrid systems. Nucleic Acids Res. 27, 919â 929 (1999).
Ferrero, R. L., Cussac, V., Courcoux, P. & Labigne, A. Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J. Bacteriol. 174, 4212â 4217 (1992).
Acknowledgements
We thank M. Fromont-Racine, P. Glaser, A. Jacquier, A. Brunet and L. Decourty for their help at the launch of this project; M. Fejes, G. Conan and P. Desmoucelle for technical assistance; G. Boissy and J.-L. Divol for their help in software development; F. Colland for his contribution to the mapping of FliA interacting domain on the 3D structure of the core RNA polymerase; and S. Whiteside for a thorough and critical reading of the manuscript. We are very grateful to R. Benarous, J. Camonis, L. Daviet, M. Rosbash, A.D. Strosberg and S. Whiteside for many stimulating discussions. This work was supported by an interest-free loan from the ANVAR. P.L. is on leave from the CNRS.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Rights and permissions
About this article
Cite this article
Rain, JC., Selig, L., De Reuse, H. et al. The proteinâprotein interaction map of Helicobacter pylori. Nature 409, 211â215 (2001). https://doi.org/10.1038/35051615
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/35051615
This article is cited by
-
HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1
Nature Communications (2024)
-
Identification of ProteinâProtein Interaction Associated Functions Based on Gene Ontology
The Protein Journal (2024)
-
The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus
Nature Communications (2023)
-
Random search immune algorithm for community detection
Soft Computing (2023)
-
The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry
Nature Communications (2021)


