Abstract
For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas1,2. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's earliest biosphere1,2,3. Despite their evolutionary significance, little is known about stromatolite formation, especially the relative roles of microbial and environmental factors in stromatolite accretion1,3. Here we show that growth of modern marine stromatolites represents a dynamic balance between sedimentation and intermittent lithification of cyanobacterial mats. Periods of rapid sediment accretion, during which stromatolite surfaces are dominated by pioneer communities of gliding filamentous cyanobacteria, alternate with hiatal intervals. These discontinuities in sedimentation are characterized by development of surface films of exopolymer and subsequent heterotrophic bacterial decomposition, forming thin crusts of microcrystalline carbonate. During prolonged hiatal periods, climax communities develop, which include endolithic coccoid cyanobacteria. These coccoids modify the sediment, forming thicker lithified laminae. Preservation of lithified layers at depth creates millimetre-scale lamination. This simple model of modern marine stromatolite growth may be applicable to ancient stromatolites.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Grotzinger, J. P & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313â 358 (1999).
Walter, M. R. in Early Life on Earth (ed. Bengtson, S.) Nobel Symposium Vol. 84, 270â286 (Columbia Univ. Press, New York, 1994).
Walter, M. R. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 187â 213 (Princeton Univ. Press, Princeton, 1983).
Dravis, J. J. Hardened subtidal stromatolites, Bahamas. Science 219 , 385â386 (1983).
Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K. & Steinen, R. P. Giant subtidal stromatolites forming in normal salinity water. Nature, 324, 55â58 (1986).
Reid, R. P., Macintyre, I. G., Steneck, R. S., Browne, K. M. & Miller, T. E. Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33, 1 â18 (1995).
Reid, R. P., Macintyre, I. G. & Steneck, R. S. A microbialite/algal ridge fringing reef complex, Highborne Cay, Bahamas. Atoll Res. Bull. 466, 1â18 (1999).
Golubic, S. & Browne, K. M. Schizothrix gebeleinii sp. nova builds subtidal stromatolites, Lee Stocking Island. Algolog. Stud. 83, 273â290 ( 1996).
Visscher, P. T. et al. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83, 1482â1491 (1998).
Visscher, P. T., Gritzer, R. F. & Leadbetter, E. R. Low-molecular weight sulfonates: a major substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 65, 3272â3278 ( 1999).
Decho, A. W., Visscher, P. T. & Reid, R. P. Cycling and production of natural microbial exopolymers (EPS) within a marine stromatolite. Aquat. Microb. Ecol. (submitted).
Stal, L. J., van Gemerden, H. & Krumbein, W. E. Structure and development of a benthic microbial mat. FEMS Microbiol. Ecol. 31, 111â 125 (1985).
Pinckney, J. L. & Reid, R. P. Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas. Facies 36, 204â207 (1997).
Seeong-Joo, L., Browne, K. M. & Golubic, S. in Microbial Sediments (eds Riding, R. E. & Awramik, S. M.) 16â24 (Springer, New York, 2000).
Awramik, S. M. & Riding, R. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc. Natl Acad. Sci. USA 85, 1327â1329 ( 1988).
Riding, R. in Biostabilization of Sediments (eds Krumbein, W. E., Paterson, D. M. & Stal, L. J.) Vol. 84, 183â202 (Oldenburg Univ. Press, Oldenburg, Germany, 1994).
Van Gemerden, H. Microbial mats: A joint venture. Mar. Geol. 113, 3â25 (1993).
Visscher, P. T., Reid, R. P. & Bebout, B. M. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology (in the press).
Macintyre, I. G., Prufert-Bebout, L. & Reid, R. P. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology (in the press).
Reid R. P. & Macintyre, I. G. Microboring versus recrystallization: further insight into the micritization process. J. Sediment. Res. 70, 24â28 ( 2000).
Golubic, S., Seeong-Joo, L. & Browne, K. M. in Microbial Sediments (eds Riding, R. E. & Awramik, S. M.) 57â67 (Springer, New York, 2000).
Bertrand-Sarfati, J. in Stromatolites, Developments in Sedimentology (ed. Walter, M. R.) Vol. 20, 251â259 (Elsevier, New York, 1976).
Logan, B. W. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 69, 517â 533 (1961).
Monty, C. L. V. in Stromatolites, Developments in Sedimentology (ed. Walter, M. R.) Vol. 20, 193â250 (Elsevier, New York, 1976).
Chafetz, H. S. & Buczynski, C. Bacterially induced lithification of microbial mats. Palaios 7, 277â293 (1992).
Bartley, J. K. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571â 586 (1996).
Krumbein, W. E., Cohen, J. & Shilo, M. Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22, 635â 656 (1977).
Walter, M. R., Bauld, J., DesMarais, D. J. & Schopf, J. W. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 335â338 (Cambridge Univ. Press, Cambridge, 1992).
Decho, A. W. & Kawaguchi, T. Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions (EPS) using nanoplast resin. BioTechniques 27, 1246â 1252 (1999).
Paerl, H. W., Bebout, B. M., Joye, S. B. & DesMarais, D. J. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Limnol. Oceanogr. 38, 1150â1159 (1993).
Acknowledgements
D. A. Dean prepared petrographic thin sections; T. Kawaguchi provided confocal images; N. Pinel analysed layer distribution. Numerous students assisted in field and laboratory studies. Logistical field support was provided by the crew of the RV Calanus and Highborne Cay management. This study is a contribution to the Research Initiative on Bahamian Stromatolites Project and International Geological Correlation Project Biosedimentology of Microbial Buildups. Funding for this research was provided by the US National Science Foundation, Ocean Sciences Division and NASA's Exobiology Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reid, R., Visscher, P., Decho, A. et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989â992 (2000). https://doi.org/10.1038/35023158
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35023158
This article is cited by
-
Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes
Microbial Ecology (2022)
-
Alternation of stromatolites and vertical burrows controlled by storm processes and sea-level changes in the middle Cambrian carbonates of central China
Journal of Earth System Science (2022)
-
Microfabric features of microbial carbonates: experimental and natural evidence of mold holes and crusts
Journal of Palaeogeography (2021)
-
Manganese carbonate stromatolites of the Ediacaran Doushantuo Formation in Chengkou, northern Yangtze Craton, China
Journal of Palaeogeography (2021)
-
Non-lithifying microbial ecosystem dissolves peritidal lime sand
Nature Communications (2021)