Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity

Abstract

The ‘petite colonie’ mutation of Saccharomyces cerevisiae1,2 is characterized by an irreversible loss of respiration and by an extraordinarily high spontaneous mutation rate3,4. Crosses of wild-type cells with petite mutants exhibit a non-mendelian segregation of the mutation, yielding either wild-type progeny only1,2, or both wild-type and petite mutants in proportions essentially dependent on the particular petite used3. In the first case, the petites entering the cross are called neutral, in the second one suppressive3. While the molecular basis of the spontaneous petite mutation is now understood4–12, suppressivity has remained an elusive phenomenon for the past 25 yr. We report here that the mitochondrial genome of most spontaneous petites (which is exclusively made up by the tandem repetition of a DNA segment excised from the genome of parental wild-type cells5–8) carries at least one of the ori sequences of the parental wild-type genome. These are long homologous DNA stretches showing striking similarities with the origins of replication of mitochondrial DNAs from mammalian cells. The properties (intact or altered primary structure, high or low number) of the ori sequences of petite genomes seem to determine suppressivity—the level of transmission of petite genomes to the progeny of crosses with wild-type cells. These results indicate that ori sequences are indeed origins of DNA replication and that suppressivity depends on the relative replication efficiencies of petite and wild-type genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ephrussi, B. in Unités Biologiques Douées de Continuité Génétique, 165–180 (Editions du CNRS, Paris, 1949).

    Google Scholar 

  2. Ephrussi, B. in Nucleocytoplasmic Relations in Microorganisms, 13–47 (Clarendon, Oxford, 1952).

    Google Scholar 

  3. Ephrussi, B., de Margerie-Hottinguer, H. & Roman, H. Proc. natn. Acad. Sci. U.S.A. 41, 1065–1071 (1955).

    Article  CAS  ADS  Google Scholar 

  4. Bernardi, G. Trends biochem. Sci. 4, 197–201 (1979).

    Article  CAS  Google Scholar 

  5. Faugeron-Fonty, G. et al. J. molec. Biol. 134, 493–537 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Gaillard, C. & Bernardi, G. Molec. gen. Genet. 174, 335–337 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Gaillard, C., Strauss, F. & Bernardi, G. Nature 283, 218–220 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Baldacci, G., de Zamaroczy, M. & Bernardi, G. FEBS Lett. 114, 234–236 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Bernardi, G. & Bernardi, G. FEBS Lett. 115, 159–162 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Bernardi, G. et al. in DNA Recombination, Interactions and Repair (eds Zadrazil, S. & Sponar, J.) 77–84 (Pergamon, Oxford, 1980).

    Book  Google Scholar 

  11. Bernardi, G. et al. in Mobilization and Reassembly of Genetic Information (eds Scott, W. A., Werner, R., Joseph, D. R. & Schultz, J.) 119–132 (Academic, New York, 1980).

    Google Scholar 

  12. Bernardi, G. et al. in The Organization and Expression of the Mitochondrial Genome (eds Kroon, A. M. & Saccone, C.) 21–31 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  13. Prunell, A. & Bernardi, G. J. molec. Biol. 110, 53–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. de Zamaroczy, M., Baldacci, G. & Bernardi, G. FEBS Lett. 108, 429–432 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Goursot, R., de Zamaroczy, M., Baldacci, G. & Bernvardi, G. Curr. Genet. 1, 173–176 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Nobrega, F. G. & Tzagoloff, A. J. biol Chem. 255, 9828–9837 (1980).

    CAS  PubMed  Google Scholar 

  17. Macino, G. & Tzagoloff, A. Cell 20, 507–517 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Sanders, J. P. M., Heyting, C., Verbeet, M. Ph., Meijlink, F. C. P. W. & Borst, P. Molec. gen. Genet. 157, 239–261 (1977).

    Article  CAS  Google Scholar 

  19. Wesolowski, M., Monnerot, M. & Fukuhara, H. Curr. Genet. 2, 121–129 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Tabak, H. F., Hecht, N. B., Menke, M. M. & Hollenberg, C. P. Curr. Genet. 1, 33–43 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Coruzzi, G. & Tzagoloff, A. J. biol. Chem. 254, 9324–9330 (1979).

    CAS  PubMed  Google Scholar 

  22. Heyting, C. et al. Molec. gen. Genet. 168, 231–250 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Thalenfeld, B. E. & Tzagoloff, A. J. biol. Chem. 255, 6173–6180 (1980).

    CAS  PubMed  Google Scholar 

  24. Bonitz, S. G., Coruzzi, G., Thalenfeld, B. E. & Tzagoloff, A. J. biol. Chem. (in the press),

  25. Tzagoloff, A., Nobrega, M., Akai, A. & Macino, G. Curr. Genet. 2, 149–157 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Berlani, R. E., Bonitz, S. G., Coruzzi, G., Nobrega, M. & Tzagoloff, A. Nucleic Acids Res. 8, 5017–5030 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathews, S., Schweyen, R. J. & Kaudewitz, F. in Mitochondria 1977 (eds Bandlow, W. et al.) 133–138 (de Gruyter, Berlin, (1977).

    Google Scholar 

  28. Crews, S., Ojala, D., Posakony, J., Nishiguchi, J. & Attardi, G. Nature 277, 192–198 (1979).

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Gillum, A. M. & Clayton, D. A. J. molec. Biol. 135, 353–368 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi, M., Yagimuma, K., Seki, T. & Koike, K. in The Organization and Expression of the Mitochondrial Genome (eds Kroon, A. M. & Saccone, C.) 221–229 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  31. Blanc, H. & Dujon, B. Proc. natn. Acad. Sci. U.S.A. 77, 3942–3946 (1980).

    Article  CAS  ADS  Google Scholar 

  32. Gingold, E. B. 10th Int. Conf. of Yeast Genetics and Molecular Biology, Abstr. no 333, 143 1980).

  33. Carnevali, F., Morpurgo, G. & Tecce, G. Science 163, 1331–1333 (1969).

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Rank, G. H. Can. J. Genet. Cytol. 12, 129–136 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. Rank, G. H. Can. J. Genet. Cytol. 12, 340–346 (1970).

    Article  CAS  PubMed  Google Scholar 

  36. Rank, G. H. & Bech-Hansen, N. T. Can. J. Microbiol. 18, 1–7 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. Mills, D. R., Peterson, R. L. & Spiegelman, S. Proc. natn. Acad. Sci. U.S.A. 58, 217–224 (1967).

    Article  CAS  ADS  Google Scholar 

  38. Coen, D., Deutsch, J., Netter, P., Petrochilo, E. & Slonimski, P. P. in Control of Organelle Development, 24th Symp. Soc. exp. Biol., 449–496 (Cambridge University Press, London, 1970).

    Google Scholar 

  39. Deutsch, J. et al. Genetics 76, 195–219 (1973).

    Google Scholar 

  40. Michaelis, G., Petrochilo, E. & Slonimski, P. P. Molec. gen. Genet. 123, 51–65 (1973).

    Article  CAS  PubMed  Google Scholar 

  41. Perlman, P. S. & Birky, C. W. Proc. natn. Acad. Sci. U.S.A. 71, 4612–4616 (1974).

    Article  CAS  ADS  Google Scholar 

  42. Slonimski, P. P. & Lazowska, J. in Mitochondria 1977 (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 39–52 (de Gruyter, Berlin, 1977).

    Google Scholar 

  43. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Zamaroczy, M., Marotta, R., Faugeron-Fonty, G. et al. The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 292, 75–78 (1981). https://doi.org/10.1038/292075a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/292075a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing