Abstract
The âpetite colonieâ mutation of Saccharomyces cerevisiae1,2 is characterized by an irreversible loss of respiration and by an extraordinarily high spontaneous mutation rate3,4. Crosses of wild-type cells with petite mutants exhibit a non-mendelian segregation of the mutation, yielding either wild-type progeny only1,2, or both wild-type and petite mutants in proportions essentially dependent on the particular petite used3. In the first case, the petites entering the cross are called neutral, in the second one suppressive3. While the molecular basis of the spontaneous petite mutation is now understood4â12, suppressivity has remained an elusive phenomenon for the past 25 yr. We report here that the mitochondrial genome of most spontaneous petites (which is exclusively made up by the tandem repetition of a DNA segment excised from the genome of parental wild-type cells5â8) carries at least one of the ori sequences of the parental wild-type genome. These are long homologous DNA stretches showing striking similarities with the origins of replication of mitochondrial DNAs from mammalian cells. The properties (intact or altered primary structure, high or low number) of the ori sequences of petite genomes seem to determine suppressivityâthe level of transmission of petite genomes to the progeny of crosses with wild-type cells. These results indicate that ori sequences are indeed origins of DNA replication and that suppressivity depends on the relative replication efficiencies of petite and wild-type genomes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ephrussi, B. in Unités Biologiques Douées de Continuité Génétique, 165â180 (Editions du CNRS, Paris, 1949).
Ephrussi, B. in Nucleocytoplasmic Relations in Microorganisms, 13â47 (Clarendon, Oxford, 1952).
Ephrussi, B., de Margerie-Hottinguer, H. & Roman, H. Proc. natn. Acad. Sci. U.S.A. 41, 1065â1071 (1955).
Bernardi, G. Trends biochem. Sci. 4, 197â201 (1979).
Faugeron-Fonty, G. et al. J. molec. Biol. 134, 493â537 (1979).
Gaillard, C. & Bernardi, G. Molec. gen. Genet. 174, 335â337 (1979).
Gaillard, C., Strauss, F. & Bernardi, G. Nature 283, 218â220 (1980).
Baldacci, G., de Zamaroczy, M. & Bernardi, G. FEBS Lett. 114, 234â236 (1980).
Bernardi, G. & Bernardi, G. FEBS Lett. 115, 159â162 (1980).
Bernardi, G. et al. in DNA Recombination, Interactions and Repair (eds Zadrazil, S. & Sponar, J.) 77â84 (Pergamon, Oxford, 1980).
Bernardi, G. et al. in Mobilization and Reassembly of Genetic Information (eds Scott, W. A., Werner, R., Joseph, D. R. & Schultz, J.) 119â132 (Academic, New York, 1980).
Bernardi, G. et al. in The Organization and Expression of the Mitochondrial Genome (eds Kroon, A. M. & Saccone, C.) 21â31 (Elsevier, Amsterdam, 1980).
Prunell, A. & Bernardi, G. J. molec. Biol. 110, 53â74 (1977).
de Zamaroczy, M., Baldacci, G. & Bernardi, G. FEBS Lett. 108, 429â432 (1979).
Goursot, R., de Zamaroczy, M., Baldacci, G. & Bernvardi, G. Curr. Genet. 1, 173â176 (1980).
Nobrega, F. G. & Tzagoloff, A. J. biol Chem. 255, 9828â9837 (1980).
Macino, G. & Tzagoloff, A. Cell 20, 507â517 (1980).
Sanders, J. P. M., Heyting, C., Verbeet, M. Ph., Meijlink, F. C. P. W. & Borst, P. Molec. gen. Genet. 157, 239â261 (1977).
Wesolowski, M., Monnerot, M. & Fukuhara, H. Curr. Genet. 2, 121â129 (1980).
Tabak, H. F., Hecht, N. B., Menke, M. M. & Hollenberg, C. P. Curr. Genet. 1, 33â43 (1979).
Coruzzi, G. & Tzagoloff, A. J. biol. Chem. 254, 9324â9330 (1979).
Heyting, C. et al. Molec. gen. Genet. 168, 231â250 (1979).
Thalenfeld, B. E. & Tzagoloff, A. J. biol. Chem. 255, 6173â6180 (1980).
Bonitz, S. G., Coruzzi, G., Thalenfeld, B. E. & Tzagoloff, A. J. biol. Chem. (in the press),
Tzagoloff, A., Nobrega, M., Akai, A. & Macino, G. Curr. Genet. 2, 149â157 (1980).
Berlani, R. E., Bonitz, S. G., Coruzzi, G., Nobrega, M. & Tzagoloff, A. Nucleic Acids Res. 8, 5017â5030 (1980).
Mathews, S., Schweyen, R. J. & Kaudewitz, F. in Mitochondria 1977 (eds Bandlow, W. et al.) 133â138 (de Gruyter, Berlin, (1977).
Crews, S., Ojala, D., Posakony, J., Nishiguchi, J. & Attardi, G. Nature 277, 192â198 (1979).
Gillum, A. M. & Clayton, D. A. J. molec. Biol. 135, 353â368 (1979).
Kobayashi, M., Yagimuma, K., Seki, T. & Koike, K. in The Organization and Expression of the Mitochondrial Genome (eds Kroon, A. M. & Saccone, C.) 221â229 (Elsevier, Amsterdam, 1980).
Blanc, H. & Dujon, B. Proc. natn. Acad. Sci. U.S.A. 77, 3942â3946 (1980).
Gingold, E. B. 10th Int. Conf. of Yeast Genetics and Molecular Biology, Abstr. no 333, 143 1980).
Carnevali, F., Morpurgo, G. & Tecce, G. Science 163, 1331â1333 (1969).
Rank, G. H. Can. J. Genet. Cytol. 12, 129â136 (1970).
Rank, G. H. Can. J. Genet. Cytol. 12, 340â346 (1970).
Rank, G. H. & Bech-Hansen, N. T. Can. J. Microbiol. 18, 1â7 (1972).
Mills, D. R., Peterson, R. L. & Spiegelman, S. Proc. natn. Acad. Sci. U.S.A. 58, 217â224 (1967).
Coen, D., Deutsch, J., Netter, P., Petrochilo, E. & Slonimski, P. P. in Control of Organelle Development, 24th Symp. Soc. exp. Biol., 449â496 (Cambridge University Press, London, 1970).
Deutsch, J. et al. Genetics 76, 195â219 (1973).
Michaelis, G., Petrochilo, E. & Slonimski, P. P. Molec. gen. Genet. 123, 51â65 (1973).
Perlman, P. S. & Birky, C. W. Proc. natn. Acad. Sci. U.S.A. 71, 4612â4616 (1974).
Slonimski, P. P. & Lazowska, J. in Mitochondria 1977 (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 39â52 (de Gruyter, Berlin, 1977).
Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560â564 (1977).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
de Zamaroczy, M., Marotta, R., Faugeron-Fonty, G. et al. The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 292, 75â78 (1981). https://doi.org/10.1038/292075a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/292075a0
This article is cited by
-
petiteFinder: an automated computer vision tool to compute Petite colony frequencies in bakerâs yeast
BMC Bioinformatics (2023)
-
Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy
Current Genetics (2003)
-
Mitochondrial DNA: does more lead to less?
Nature Genetics (1994)
-
Titration of replication activity by increasing ARS dosage in yeast plasmids
Current Genetics (1993)
-
Sequence rearrangements at theori 7 region ofSaccharomyces cerevisiae mitochondrial DNA
Journal of Molecular Evolution (1991)


