Abstract
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
- Quake, S. R. A decade of molecular cell atlases. Trends Genet. 38, 805â810 (2022). 
- Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695â713 (2023). 
- Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627â644 (2021). 
- Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451â453 (2017). 
- Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486â2496 (2022). 
- Ferreira, P. G. et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 9, 490 (2018). 
- Baechler, E. C. et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun. 5, 347â353 (2004). 
- Massoni-Badosa, R. et al. Sampling time-dependent artifacts in single-cell genomics studies. Genome Biol. 21, 112 (2020). 
- Zhu, Y., Wang, L., Yin, Y. & Yang, E. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Sci. Rep. 7, 5435 (2017). 
- OâFlanagan, C. H. et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20, 210 (2019). 
- Liu, Y. et al. Digestion of nucleic acids starts in the stomach. Sci. Rep. 5, 11936 (2015). 
- Martinez-Diez, M. C., Serrano, M. A., Monte, M. J. & Marin, J. J. Comparison of the effects of bile acids on cell viability and DNA synthesis by rat hepatocytes in primary culture. Biochim. Biophys. Acta 1500, 153â160 (2000). 
- Sorrentino, S. & Libonati, M. Human pancreatic-type and nonpancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties. Arch. Biochem. Biophys. 312, 340â348 (1994). 
- Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020). 
- Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 47, 1584â1797 (2017). 
- Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431â3438 (2016). 
- Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865â868 (2017). 
- Quan, Y. et al. Impact of cell dissociation on identification of breast cancer stem cells. Cancer Biomark. 12, 125â133 (2012). 
- Autengruber, A., Gereke, M., Hansen, G., Hennig, C. & Bruder, D. Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol. 2, 112â120 (2012). 
- Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936â939 (2017). 
- Butto, T. et al. Nuclei on the rise: when nuclei-based methods meet next-generation sequencing. Cells 12, 1051 (2023). 
- Caglayan, E., Liu, Y. & Konopka, G. Neuronal ambient RNA contamination causes misinterpreted and masked cell types in brain single-nuclei datasets. Neuron 110, 4043â4056.e5 (2022). 
- Thrupp, N. et al. Single-nucleus RNA-Seq is not suitable for detection of microglial activation genes in humans. Cell Rep. 32, 108189 (2020). 
- Pitchiaya, S. et al. Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Mol. Cell 74, 521â533.e6 (2019). 
- Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562â578 (2018). 
- Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263â280 (2022). 
- Chervov, A. & Zinovyev, A. Computational challenges of cell cycle analysis using single cell transcriptomics. Preprint at https://doi.org/10.48550/arXiv.2208.05229 (2022). 
- Osorio, D. & Cai, J. J. Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinformatics 37, 963â967 (2021). 
- Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020). 
- Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2, lqaa078 (2020). 
- Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). 
- Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421â427 (2018). 
- PolaÅski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964â965 (2020). 
- Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289â1296 (2019). 
- Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685â691 (2019). 
- Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873â1887.e17 (2019). 
- Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888â1902.e21 (2019). 
- Nguyen, H. C. T., Baik, B., Yoon, S., Park, T. & Nam, D. Benchmarking integration of single-cell differential expression. Nat. Commun. 14, 1570 (2023). 
- Junttila, S., Smolander, J. & Elo, L. L. Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data. Brief. Bioinform. 23, bbac286 (2022). 
- Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255â261 (2018). 
- Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245â253 (2022). 
- Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053â1058 (2018). 
- Lakkis, J. et al. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Genome Res. 31, 1753â1766 (2021). 
- Li, H., McCarthy, D. J., Shim, H. & Wei, S. Trade-off between conservation of biological variation and batch effect removal in deep generative modeling for single-cell transcriptomics. BMC Bioinform. 23, 460 (2022). 
- Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715â721 (2019). 
- Bahrami, M. et al. Deep feature extraction of single-cell transcriptomes by generative adversarial network. Bioinformatics 37, 1345â1351 (2021). 
- Tyler, S. R., Guccione, E. & Schadt, E. E. Erasure of biologically meaningful signal by unsupervised scRNAseq batch-correction methods. Preprint at bioRxiv https://doi.org/10.1101/2021.11.15.468733 (2023). 
- Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41â50 (2022). 
- Zhang, Z. et al. Signal recovery in single cell batch integration. Preprint at bioRxiv https://doi.org/10.1101/2023.05.05.539614 (2023). 
- Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. Nat. Genet. 55, 1998â2008 (2023). 
- Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaa073 (2020). 
- Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017). 
- Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022). 
- Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792â802 (2020). 
- Zhang, A. W. et al. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat. Methods 16, 1007â1015 (2019). 
- Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Methods 16, 983â986 (2019). 
- Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 13, 1246 (2022). 
- Franchini, M., Pellecchia, S., Viscido, G. & Gambardella, G. Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data. NAR Genom. Bioinform. 5, lqad024 (2023). 
- Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163â172 (2019). 
- Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359â362 (2018). 
- de Kanter, J. K., Lijnzaad, P., Candelli, T., Margaritis, T. & Holstege, F. C. P. CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Res. 47, e95 (2019). 
- Lyu, P., Zhai, Y., Li, T. & Qian, J. CellAnn: a comprehensive, super-fast, and user-friendly single-cell annotation web server. Bioinformatics 39, btad521 (2023). 
- Boufea, K., Seth, S. & Batada, N. N. scID uses discriminant analysis to identify transcriptionally equivalent cell types across single-cell RNA-seq data with batch effect. iScience 23, 100914 (2020). 
- Lin, Y. et al. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol. Syst. Biol. 16, e9389 (2020). 
- Yin, Q. et al. scGraph: a graph neural network-based approach to automatically identify cell types. Bioinformatics 38, 2996â3003 (2022). 
- Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20, 264 (2019). 
- Li, C. et al. SciBet as a portable and fast single cell type identifier. Nat. Commun. 11, 1818 (2020). 
- Hou, W. & Ji, Z. Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis. Nat. Methods https://doi.org/10.1038/s41592-024-02235-4 (2024). 
- Lotfollahi, M., Yuhan, H., Theis, F. J. & Satija, R. The future of rapid and automated single-cell data analysis using reference mapping. Cell 187, 2343â2358 (2024). 
- Michielsen, L. et al. Single-cell reference mapping to construct and extend cell-type hierarchies. NAR Genom. Bioinform. 5, lqad070 (2023). 
- Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121â130 (2022). 
- Osumi-Sutherland, D. et al. Cell type ontologies of the Human Cell Atlas. Nat. Cell Biol. 23, 1129â1135 (2021). 
- Flanagin, A., Frey, T. & Christiansen, S. L. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA 326, 621â627 (2021). 
- BrbiÄ, M. et al. Annotation of spatially resolved single-cell data with STELLAR. Nat. Methods 19, 1411â1418 (2022). 
- Wen, L. & Tang, F. Single-cell sequencing in stem cell biology. Genome Biol. 17, 71 (2016). 
- Chen, H., Ye, F. & Guo, G. Revolutionizing immunology with single-cell RNA sequencing. Cell Mol. Immunol. 16, 242â249 (2019). 
- Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598â606 (2023). 
- Zhang, Y. et al. Single-cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 40, 81 (2021). 
- Machado, L. et al. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 28, 1125â1135.e7 (2021). 
- Uniken Venema, W. T. C. et al. Gut mucosa dissociation protocols influence cell type proportions and single-cell gene expression levels. Sci. Rep. 12, 9897 (2022). 
- van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935â936 (2017). 
- Jones, R. C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022). 
- Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367â372 (2018). 
- Kumar, T. et al. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620, 181â191 (2023). 
- Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223â227 (2016). 
- Rossi, L., Challen, G. A., Sirin, O., Lin, K. K. & Goodell, M. A. Hematopoietic stem cell characterization and isolation. Methods Mol. Biol. 750, 47â59 (2011). 
- Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502â1506 (1992). 
- Liu, D. D. et al. Purification and characterization of human neural stem and progenitor cells. Cell 186, 1179â1194.e15 (2023). 
- Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43â56.e21 (2018). 
- Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631â643.e4 (2017). 
- AlâKhafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat. Biotechnol. 42, 582â586 (2023). 
- Salmen, F. et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nat. Biotechnol. 40, 1780â1793 (2022). 
- Herman, J. S., Sagar & Grün, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379â386 (2018). 
- Jindal, A., Gupta, P., Jayadeva & Sengupta, D. Discovery of rare cells from voluminous single cell expression data. Nat. Commun. 9, 4719 (2018). 
- Fa, B. et al. GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles. Nat. Commun. 12, 4197 (2021). 
- Dong, R. & Yuan, G. C. GiniClust3: a fast and memory-efficient tool for rare cell type identification. BMC Bioinform. 21, 158 (2020). 
- Wegmann, R. et al. CellSIUS provides sensitive and specific detection of rare cell populations from complex single-cell RNA-seq data. Genome Biol. 20, 142 (2019). 
- Song, D., Li, K., Hemminger, Z., Wollman, R. & Li, J. J. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling. Bioinformatics 37, i358âi366 (2021). 
- Neufeld, A., Gao, L. L., Popp, J., Battle, A. & Witten, D. Inference after latent variable estimation for single-cell RNA sequencing data. Biostatistics 25, 270â287 (2023). 
- Song, D., Li, K., Ge, X. & Li, J. J. ClusterDE: a post-clustering differential expression (DE) method robust to false-positive inflation caused by double bioRxiv (2023). 
- Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. 41, 1746â1757 (2023). 
- Singhal, V. et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431â441 (2024). 
- Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496â2506 (2016). 
- Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547â554 (2019). 
- La Manno, G. et al. RNA velocity of single cells. Nature 560, 494â498 (2018). 
- Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408â1414 (2020). 
- Gorin, G., Svensson, V. & Pachter, L. Protein velocity and acceleration from single-cell multiomics experiments. Genome Biol. 21, 39 (2020). 
- Hendriks, G. J. et al. NASC-seq monitors RNA synthesis in single cells. Nat. Commun. 10, 3138 (2019). 
- Erhard, F. et al. scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571, 419â423 (2019). 
- Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535â1548.e16 (2018). 
- Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456â460 (2017). 
- Sharma, R. et al. The TRACE-seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. Nat. Commun. 12, 472 (2021). 
- Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905â1923.e25 (2022). 
- Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85â90 (2021). 
- Muyas, F. et al. De novo detection of somatic mutations in high-throughput single-cell profiling data sets. Nat. Biotechnol. 42, 758â767 (2024). 
- Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325â1339.e22 (2019). 
- Gabbutt, C. et al. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat. Biotechnol. 40, 720â730 (2022). 
- DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149â163 (2016). 
- Huyghe, A., Trajkova, A. & Lavial, F. Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol. 34, 255â267 (2024). 
- Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451â460 (2019). 
- Stassen, S. V., Yip, G. G. K., Wong, K. K. Y., Ho, J. W. K. & Tsia, K. K. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 12, 5528 (2021). 
- Pandey, K. & Zafar, H. Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET. Nucleic Acids Res. 50, e86 (2022). 
- Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017). 
- Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271â281 (2017). 
- Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159â170 (2022). 
- Weiler, P., Lange, M., Klein, M., Peâer, D. & Theis, F. CellRank 2: unified fate mapping in multiview single-cell data. Nat. Methods 21, 1196â1205 (2024). 
- Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928â943.e22 (2019). 
- Tong, A., Huang, J., Wolf, G., van Dijk, D. & Krishnaswamy, S. TrajectoryNet: a dynamic optimal transport network for modeling cellular dynamics. Proc. Mach. Learn. Res. 119, 9526â9536 (2020). 
- Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742â751 (2023). 
- Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157â168 (2000). 
- Senra, D., Guisoni, N. & Diambra, L. ORIGINS: a protein network-based approach to quantify cell pluripotency from scRNA-seq data. MethodsX 9, 101778 (2022). 
- Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338â354.e15 (2018). 
- Müller, F. J. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 455, 401â405 (2008). 
- Zhang, F. et al. FitDevo: accurate inference of single-cell developmental potential using sample-specific gene weight. Brief. Bioinform. 23, bbac293 (2022). 
- Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405â411 (2020). 
- Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266â277 (2016). 
- Kannan, S., Farid, M., Lin, B. L., Miyamoto, M. & Kwon, C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput. Biol. 17, e1009305 (2021). 
- Jin, S., MacLean, A. L., Peng, T. & Nie, Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34, 2077â2086 (2018). 
- Guo, M., Bao, E. L., Wagner, M., Whitsett, J. A. & Xu, Y. SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Res. 45, e54 (2017). 
- Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cellâs transcriptome. Nat. Commun. 8, 15599 (2017). 
- Teschendorff, A. E., Maity, A. K., Hu, X., Weiyan, C. & Lechner, M. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-seq data. Bioinformatics 37, 1528â1534 (2021). 
- Ni, X. et al. Accurate estimation of single-cell differentiation potency based on network topology and gene ontology information. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 3255â3262 (2022). 
- Kang, M. et al. Mapping single-cell developmental potential in health and disease with interpretable deep learning. Preprint at bioRxiv https://doi.org/10.1101/2024.03.19.585637 (2024). 
- Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308â318 (2022). 
- Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74â85 (2022). 
- Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572â584 (2023). 
- Greenwald, A. C. et al. Integrative spatial analysis reveals a multi-layered organization of glioblastoma. Cell 187, 2485â2501.e26 (2024). 
- Liu, J. et al. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. Life Sci. Alliance 6, e202201701 (2023). 
- He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794â1806 (2022). 
- Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235â239 (2019). 
- Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018). 
- Janesick, A. et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023). 
- Liang, S. et al. Single-cell manifold-preserving feature selection for detecting rare cell populations. Nat. Comput. Sci. 1, 374â384 (2021). 
- Missarova, A. et al. geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Genome Biol. 22, 333 (2021). 
- Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313â319 (2021). 
- Wei, X. et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444 (2022). 
- Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777â1792.e21 (2022). 
- Nagendran, M. et al. 1457 Visium HD enables spatially resolved, single-cell scale resolution mapping of FFPE human breast cancer tissue. J. Immunother. Cancer 11, A1620 (2023). 
- Lee, Y. et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021). 
- Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111â117 (2021). 
- Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101â109 (2024). 
- Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391â399 (2012). 
- Jung, N. & Kim, T.-K. Spatial transcriptomics in neuroscience. Exp. Mol. Med. 55, 2105â2115 (2023). 
- Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534â546 (2022). 
- Magoulopoulou, A. et al. Padlock probe-based targeted in situ sequencing: overview of methods and applications. Annu. Rev. Genom. Hum. Genet. 24, 133â150 (2023). 
- Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022). 
- Chu, T., Wang, Z., Peâer, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505â517 (2022). 
- Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773â782 (2019). 
- Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662â670 (2022). 
- Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661â671 (2022). 
- Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517â526 (2022). 
- Vahid, M. R. et al. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat. Biotechnol. 41, 1543â1548 (2023). 
- Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352â1362 (2021). 
- Wei, R. et al. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190â1199 (2022). 
- Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375â1384 (2021). 
- BergenstrÃ¥hle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476â479 (2022). 
- Hu, J. et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. Cell Syst. 14, 404â417.e4 (2023). 
- Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02019-9 (2024). 
- Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat. Commun. 13, 2339 (2022). 
- Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540â547 (2022). 
- Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810â826.e23 (2021). 
- Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156â1167.e15 (2018). 
- Bahar Halpern, K. et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat. Commun. 11, 1936 (2020). 
- Valdeolivas, A. et al. Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics. NPJ Precis. Oncol. 8, 10 (2024). 
- Sibai, M. et al. The spatial landscape of Cancer Hallmarks reveals patterns of tumor ecology. Preprint at bioRxiv https://doi.org/10.1101/2022.06.18.496114 (2023). 
- Heiser, C. N. et al. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 186, 5620â5637.e16 (2023). 
- Ren, Y. et al. Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat. Commun. 14, 1028 (2023). 
- Arora, R. et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat. Commun. 14, 5029 (2023). 
- Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527â541.e5 (2022). 
- Haviv, D. et al. The covariance environment defines cellular niches for spatial inference. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02193-4 (2024). 
- Abdelaal, T., Mourragui, S., Mahfouz, A. & Reinders, M. J. T. SpaGE: spatial gene enhancement using scRNA-seq. Nucleic Acids Res. 48, e107 (2020). 
- Sun, E. D., Ma, R., Navarro Negredo, P., Brunet, A. & Zou, J. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses. Nat. Methods 21, 444â454 (2024). 
- Clifton, K. et al. STalign: alignment of spatial transcriptomics data using diffeomorphic metric mapping. Nat. Commun. 14, 8123 (2023). 
- Jones, A., Townes, F. W., Li, D. & Engelhardt, B. E. Alignment of spatial genomics data using deep Gaussian processes. Nat. Methods 20, 1379â1387 (2023). 
- Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343â354 (2023). 
- Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463â1465 (2009). 
- Varrone, M., Tavernari, D., Santamaria-MartÃnez, A., Walsh, L. A. & Ciriello, G. CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat. Genet. 56, 74â84 (2024). 
- Rajachandran, S. et al. Dissecting the spermatogonial stem cell niche using spatial transcriptomics. Cell Rep. 42, 112737 (2023). 
- Walsh, L. A. & Quail, D. F. Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24, 1982â1993 (2023). 
- Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023). 
- Choi, J. et al. QuadST: a powerful and robust approach for identifying cell-cell interaction-changed genes on spatially resolved transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2023.12.04.570019 (2023). 
- Pentimalli, T. M. et al. High-resolution molecular atlas of a lung tumor in 3D. Preprint at bioRxiv https://doi.org/10.1101/2023.05.10.539644 (2023). 
- Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341â1359.e19 (2020). 
- Qiu, X. et al. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2022.12.07.519417 (2022). 
- Wu, Z. et al. Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. Nat. Biomed. Eng. 6, 1435â1448 (2022). 
- Farah, E. N. et al. Spatially organized cellular communities form the developing human heart. Nature 627, 854â864 (2024). 
- Bhate, S. S., Barlow, G. L., Schürch, C. M. & Nolan, G. P. Tissue schematics map the specialization of immune tissue motifs and their appropriation by tumors. Cell Syst. 13, 109â130.e6 (2022). 
- Kim, J. et al. Unsupervised discovery of tissue architecture in multiplexed imaging. Nat. Methods 19, 1653â1661 (2022). 
- Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023). 
- Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat. Commun. 13, 4076 (2022). 
- Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nat. Comput. Sci. 2, 399â408 (2022). 
- Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. Nat. Commun. 14, 7739 (2023). 
- Cang, Z. et al. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218â228 (2023). 
- Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021). 
- Birk, S. et al. Large-scale characterization of cell niches in spatial atlases using bio-inspired graph learning. Preprint at bioRxiv https://doi.org/10.1101/2024.02.21.581428 (2024). 
- Turesson, G. The genotypical response of the plant species to the habitat. Hereditas 3, 211â350 (1922). 
- Ortiz, R. Göte Turessonâs research legacy to Hereditas: from the ecotype concept in plants to the analysis of landracesâ diversity in crops. Hereditas 157, 44 (2020). 
- Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184, 5482â5496.e28 (2021). 
- Steen, C. B. et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 39, 1422â1437.e10 (2021). 
- Luca, B. A. et al. Atlas of clinically-distinct cell states and cellular ecosystems across human solid tumors. Cancer Res. 80, abstr. 3443 (2020). 
- Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334â1347 (2021). 
- Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467â1477 (2022). 
- Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515â524 (2023). 
- Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734â4752.e20 (2021). 
- Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497â514.e22 (2020). 
- He, S. et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02173-8 (2024). 
- Liu, C. et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev. Cell 57, 1284â1298.e5 (2022). 
- Gu, Y., Liu, J., Li, C. & Welch, J. D. Mapping cell fate transition in space and time. Preprint at bioRxiv https://doi.org/10.1101/2024.02.12.579941 (2024). 
- Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85â91 (2022). 
- Xue, Y. et al. Single-cell mitochondrial variant enrichment resolved clonal tracking and spatial architecture in human embryonic hematopoiesis. Preprint at bioRxiv https://doi.org/10.1101/2023.09.18.558215 (2023). 
- Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285â294 (2022). 
- Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360â367 (2022). 
- Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594â602 (2022). 
- Househam, J. et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature 611, 744â753 (2022). 
- Lim, J. et al. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet. 24, 573â584 (2023). 
- Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496â520 (2023). 
- Lozano, A. X. et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. 28, 353â362 (2022). 
- Kwon, M. et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11, 2168â2185 (2021). 
- Zhou, Y. et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 38, 818â828.e5 (2020). 
- Abe, Y. et al. A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling. Nat. Cell Biol. 24, 565â578 (2022). 
- Ajani, J. A. et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut 70, 55â66 (2021). 
- Beneyto-Calabuig, S. et al. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 30, 706â721.e8 (2023). 
- Miyamoto, D. T., Ting, D. T., Toner, M., Maheswaran, S. & Haber, D. A. Single-cell analysis of circulating tumor cells as a window into tumor heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 81, 269â274 (2016). 
- Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451â467 (2016). 
- Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555â563 (2023). 
- Wang, X. Q. et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 621, 868â876 (2023). 
- Lin, J. R. et al. High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 1036â1052 (2023). 
- Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548â554 (2023). 
- Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186, 363â381.e19 (2023). 
- Digre, A. & Lindskog, C. The human protein atlas-Integrated omics for single cell mapping of the human proteome. Protein Sci. 32, e4562 (2023). 
- Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods https://doi.org/10.1038/s41592-024-02201-0 (2024). 
- Carpenter, A. E. & Singh, S. Bringing computation to biology by bridging the last mile. Nat. Cell Biol. 26, 5â7 (2024). 
- Hu, Y. et al. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. Nat. Methods 21, 267â278 (2024). 
- Heimberg, G. et al. Scalable querying of human cell atlases via a foundational model reveals commonalities across fibrosis-associated macrophages. Preprint at bioRxiv https://doi.org/10.1101/2023.07.18.549537 (2023). 
- Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://doi.org/10.48550/arXiv.2108.07258 (2022). 
- Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852â866 (2022). 
- Bian, H. et al. scMulan: a multitask generative pre-trained language model for single-cell analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.577152 (2024). 
- Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods https://doi.org/10.1038/s41592-024-02305-7 (2024). 
- Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616â624 (2023). 
- Shen, H. et al. Generative pretraining from large-scale transcriptomes for single-cell deciphering. iScience 26, 106536 (2023). 
- Yang, X. et al. GeneCompass: deciphering universal gene regulatory mechanisms with knowledge-informed cross-species foundation model. Preprint at bioRxiv https://doi.org/10.1101/2023.09.26.559542 (2023). 
- Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023). 
- Zhang, R., Luo, Y., Ma, J., Zhang, M. & Wang, S. scPretrain: multi-task self-supervised learning for cell-type classification. Bioinformatics 38, 1607â1614 (2022). 
- Alsabbagh, A. R. et al. Foundation models meet imbalanced single-cell data when learning cell type annotations. Preprint at bioRxiv https://doi.org/10.1101/2023.10.24.563625 (2023). 
- Boiarsky, R., Singh, N., Buendia, A., Getz, G. & Sontag, D. A deep dive into single-cell RNA sequencing foundation models. Preprint at bioRxiv https://doi.org/10.1101/2023.10.19.563100 (2023). 
- Kedzierska, K. Z., Crawford, L., Amini, A. P. & Lu, A. X. Assessing the limits of zero-shot foundation models in single-cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.10.16.561085 (2023). 
- Khan, S. A. et al. Reusability report: learning the transcriptional grammar in single-cell RNA-sequencing data using transformers. Nat. Mach. Intell. 5, 1437â1446 (2023). 
- Schaar, A. C. et al. Nicheformer: a foundation model for single-cell and spatial omics. Preprint at bioRxiv https://doi.org/10.1101/2024.04.15.589472 (2024). 
- Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927â935 (2023). 
- Zhang, Y., TiÅo, P., Leonardis, A. & Tang, K. A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5, 726â742 (2021). 
- Swanson, K., Wu, E., Zhang, A., Alizadeh, A. A. & Zou, J. From patterns to patients: advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 186, 1772â1791 (2023). 
- Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021). 
- Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. A practical solution to pseudoreplication bias in single-cell studies. Nat. Commun. 12, 738 (2021). 
- Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020). 
- He, L. et al. NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Commun. Biol. 4, 629 (2021). 
- Pullin, J. M. & McCarthy, D. J. A comparison of marker gene selection methods for single-cell RNA sequencing data. Genome Biol. 25, 56 (2024). 
- Wang, X. et al. An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. Bioinformatics 28, 2534â2536 (2012). 
- Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293â304 (2024). 
- Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496â502 (2019). 
- Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018). 
- Ellwanger, D. C., Scheibinger, M., Dumont, R. A., Barr-Gillespie, P. G. & Heller, S. Transcriptional dynamics of hair-bundle morphogenesis revealed with CellTrails. Cell Rep. 23, 2901â2914.e13 (2018). 
- Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. Preprint at bioRxiv https://doi.org/10.1101/079509 (2016). 
- Dong, R. & Yuan, G. C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021). 
- Wan, X. et al. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope. Nat. Commun. 14, 7848 (2023). 
- Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453â457 (2015). 
- Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019). 
- Menden, K. et al. Deep learning-based cell composition analysis from tissue expression profiles. Sci. Adv. 6, eaba2619 (2020). 
- Garmire, L. X. et al. Challenges and perspectives in computational deconvolution of genomics data. Nat. Methods 21, 391â400 (2024). 
- Li, H. et al. DeconPeaker, a deconvolution model to identify cell types based on chromatin accessibility in ATAC-seq data of mixture samples. Front. Genet. 11, 392 (2020). 
- Hutson, M. Hunting for the best bioscience software tool? Check this database. Nature https://doi.org/10.1038/d41586-023-00053-w (2023). 
- Decamps, C. et al. Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software. BMC Bioinform. 21, 16 (2020). 
- Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244â256 (2021). 
Acknowledgements
The authors are grateful to the members of the Newman and Wang laboratories for the valuable discussions and feedback. The original figures were created with Biorender.com. This work was supported by the National Science Foundation (J.P.D., Graduate Research Fellowship DGE-1656518), the National Cancer Institute (L.W., R01CA266280 and U24CA274274; A.M.N., R01CA255450), the Cancer Prevention and Research Institute of Texas (L.W., RP200385), the Break Through Cancer Foundation (L.W.), the University Cancer Foundation via the Institutional Research Grant Program (L.W.), the Melanoma Research Alliance (A.M.N., grant number 926521), and the Virginia and D. K. Ludwig Fund for Cancer Research (A.M.N.). L.W. is an Andrew Sabin Family Foundation Fellow. A.M.N. is a Chan Zuckerberg Biohub â San Francisco Investigator.
Author information
Authors and Affiliations
Contributions
All authors discussed the content of the article, contributed to writing or editing, and reviewed the manuscript before submission. L.W. and A.M.N. jointly supervised the work.
Corresponding author
Ethics declarations
Competing interests
A.M.N. holds patents related to digital cytometry and cancer biomarkers and has ownership interests in CiberMed, Inc., LiquidCell Dx, Inc. and CytoTrace Biosciences, Inc. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Tallulah Andrews and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Gene Ontology: https://geneontology.org/
Human Cell Atlas: https://www.humancellatlas.org/
Human Protein Atlas: http://www.proteinatlas.org
Human Tumor Atlas Network: https://humantumoratlas.org/
Glossary
- Ambient RNA
- 
                  Extraneous RNA molecules arising from lysed cells during sample processing that can contaminate gene expression measurements. 
- Cell atlases
- 
                  Comprehensive references of cell types and states, typically generated using single-cell omics technologies. 
- Clustering
- 
                  A technique for grouping elements of a dataset (for example, cells) by a similarity measure. 
- Correlative biomarkers
- 
                  Quantitative phenotypes (for example, the abundance of a particular cell state or type within a tissue) that are statistically associated with a health outcome (known as âprognosticâ biomarkers) or the likelihood of responding to a given treatment (âpredictiveâ biomarker). 
- Digital cytometry
- 
                  A computational technique typically applied to bulk RNA admixtures to infer the proportions and characteristics of specific cell types within a complex tissue sample using gene expression signatures. 
- High-dimensional gene expression data
- 
                  A dataset containing information on the expression levels of numerous genes across multiple samples, which in single-cell RNA-seq data are single cells. 
- Linear adjustment models
- 
                  Statistical methods to correct data by accounting for the effect of one or more linear relationships between variables. 
- Low-dimensional embedding
- 
                  A representation of high-dimensional data (for example, expression matrix with thousands of genes) that reduces the number of variables, while preserving important structures and relationships in the data for simplified analysis and visualization. 
- Multicellular neighbourhood
- 
                  A local multicellular microenvironment, with an exact spatial resolution defined based on the assay and the studied tissue, for example, cells within a radius of 50âµm, or the 200 nearest neighbours of a cell. 
- Optimal transport problem
- 
                  A problem solved by determining a mapping between two distributions that minimizes a cost function; in the context of single-cell time series data, the distributions can be cell populations at different time points, and the solution finds a mapping that relates cells at a later time point to their inferred antecedents at one or more earlier time points. 
- Spatial ecotypes
- 
                  Recurrent sets of multicellular neighbourhoods characterized by a co-occurring set of phenotypic states (for example, transcriptional programmes) in one or more cell types. 
- Subtle cell state
- 
                  A cellular phenotype characterized by small or nuanced differences in gene expression compared to other states of the same cell type. 
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gulati, G.S., DâSilva, J.P., Liu, Y. et al. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol 26, 11â31 (2025). https://doi.org/10.1038/s41580-024-00768-2
- Accepted: 
- Published: 
- Issue date: 
- DOI: https://doi.org/10.1038/s41580-024-00768-2 


