Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor suppressor control of the cancer stem cell niche

Abstract

Mammary stem cells (MSCs) expansion is associated with aggressive human breast cancer. The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) is a breast cancer tumor suppressor, but the mechanisms of this suppression are not completely characterized. To determine whether PPARγ regulates MSC expansion in mammary cancer, we deleted PPARγ expression in the mammary epithelium of an in vivo model of basal breast cancer. Loss of PPARγ expression reduced tumor latency, and expanded the CD24+/CD49fhi MSC population. PPARγ-null mammary tumors exhibited increased angiogenesis, which was detected in human breast cancer. In vivo inhibition of a PPARγ-regulated miR-15a/angiopoietin-1 pathway blocked increased angiogenesis and MSC expansion. PPARγ bound and activated a canonical response element in the miR-15a gene. PPARγ-null tumors were sensitive to the targeted anti-angiogenic drug sunitinib but resistant to cytotoxic chemotherapy. Normalization of tumor vasculature with sunitinib resulted in objective response to cytotoxic chemotherapy. Chemotherapy-treated PPARγ-null mammary tumors exhibited luminal phenotype and expansion of unipotent CD61+ luminal progenitor cells. Transplantation of chemotherapy-treated luminal progenitor cells recapitulated the luminal phenotype. These results have important implications for anti-angiogenic therapy in breast cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crowe DL, Parsa B, Sinha UK . Relationships between stem cells and cancer stem cells. Histol Histopathol 2004; 19: 505–509.

    CAS  PubMed  Google Scholar 

  2. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ . Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007; 176: 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100: 15853–15858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu BY, McDermott SP, Khwaja SS, Alexander CM . The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101: 4158–4163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  9. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  10. Nieto Y, Woods J, Nawaz F, Baron A, Jones RB, Shpall EJ et al. Prognostic analysis of tumor angiogenesis, determined by microvessel density and expression of vascular endothelial growth factor, in high risk primary breast cancer patients treated with high dose chemotherapy. Br J Cancer 2007; 97: 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M et al. VEGF mediated angiogenesis links EMT induced cancer stemness to tumor initiation. Cancer Res 2014; 74: 1566–1575.

    Article  CAS  PubMed  Google Scholar 

  12. Chekhonin VP, Shein SA, Korchagina AA, Gurina OI . VEGF in tumor progression and targeted therapy. Curr Cancer Drug Targets 2013; 13: 423–443.

    Article  CAS  PubMed  Google Scholar 

  13. Lehrke M, Lazar MA . The many faces of PPARγ. Cell 2005; 123: 993–999.

    Article  CAS  PubMed  Google Scholar 

  14. Bensinger SJ, Tontonoz P . Integration of metabolism and inflammation by lipid activated nuclear receptors. Nature 2008; 454: 470–477.

    Article  CAS  PubMed  Google Scholar 

  15. Asano A, Irie Y, Saito M . Isoform specific regulation of vascular endothelial growth factor (VEGF) family mRNA expression in cultured mouse brown adipocytes. Mol Cell Endocrinol 2001; 174: 71–76.

    Article  CAS  PubMed  Google Scholar 

  16. Fauconnet S, Lascombe I, Chabannes E, Adessi GL, Desvergne B, Wahli W et al. Differential regulation of vascular endothelial growth factor expression by peroxisome proliferators activated receptors in bladder cancer cells. J Biol Chem 2002; 277: 23534–23543.

    Article  CAS  PubMed  Google Scholar 

  17. Panigraphy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ et al. PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 2002; 110: 923–932.

    Article  Google Scholar 

  18. Jiang WG, Douglas-Jones A, Mansel RE . Expression of peroxisome proliferator activated receptor γ (PPARγ) and the PPARγ coactivator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer 2003; 106: 752–757.

    Article  CAS  PubMed  Google Scholar 

  19. Watkins G, Douglas-Jones A, Mansel RE, Jiang WG . The localization and reduction of nuclear staining of PPARγ and PGC-1 in human breast cancer. Oncol Rep 2004; 12: 483–488.

    CAS  PubMed  Google Scholar 

  20. Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E, Nelson M et al. PPARγ signaling exacerbates mammary gland tumor development. Genes Dev 2004; 18: 528–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian L, Zhou J, Casimiro MC, Liang B, Ojeifo JO, Wang M et al. Activating peroxisome proliferator activated receptor γ mutant promotes tumor growth in vivo by enhancing tumorigenesis. Cancer Res 2009; 69: 9236–9244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golembesky AK, Gammon MD, North KE, Bensen JT, Schroeder JC, Teitelbaum SL et al. Peroxisome proliferator activated receptor α (PPARA) genetic polymorphisms and breast cancer risk: a Long Island ancillary study. Carcinogenesis 2008; 29: 1944–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lacroix L, Lazar V, Michiels S, Ripoche H, Dessen P, Talbot M et al. Follicular thyroid tumors with the PAX8-PPARγ1 rearrangement display characteristic genetic alterations. Am J Pathol 2005; 167: 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reddi HV, Driscoll CB, Madde P, Milosevic D, Hurley RM, McDonough SJ et al. Redifferentiation and induction of tumor suppressor miR-122 and miR-375 by the PAX8/PPAR fusion protein inhibits anaplastic thyroid cancer: a novel therapeutic strategy. Cancer Gene Ther 2013; 20: 267–275.

    Article  CAS  PubMed  Google Scholar 

  25. O’Day E, Lal A . MicroRNAs and their target networks in breast cancer. Breast Cancer Res 2010; 12: 201.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H . Circulating microRNAs as blood based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 2010; 12: R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E et al. Genome wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 2008; 22: 2953–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt SF, Jorgensen M, Chen Y, Nielsen R, Sandelin A, Mandrup S . Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics 2011; 12: 152–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu YH, Hong LQ, Yu WQ, Li XY, Zheng XY . Effect of miR-15a on induction of apoptosis in breast cancer MCF-7 cells. Chinese J Oncol 2011; 33: 827–830.

    CAS  Google Scholar 

  32. Luo Q, Li X, Li J, Kong X, Zhang J, Chen L et al. miR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol 2013; 43: 1212–1218.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T et al. Endothelial specific intron derived miR-126 is downregulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351: 157–164.

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Li Q, Liu L, Jiang B . miR-148a inhibits angiogenesis by targeting ERBB3. J Biomed Res 2011; 25: 170–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H et al. Reprogramming of the tumor microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2012; 14: 159–167.

    Article  CAS  Google Scholar 

  36. Png KJ, Halberg N, Yoshida M, Tavazoie SF . A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2012; 481: 190–194.

    Article  CAS  Google Scholar 

  37. Zou C, Xu Q, Mao F, Li D, Bian C, Liu LZ et al. miR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle 2012; 11: 2137–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siragam V, Rutnam ZJ, Yang W, Fang L, Luo L, Yang X et al. MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor like kinase 4 and matrix metalloproteinase 11. Oncotarget 2012; 3: 1370–1385.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z . GATA3 suppresses metastasis and modulates the tumor microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013; 15: 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J et al. Upregulation of miRNA-155 promotes tumor angiogenesis by targeting VHL and is associated with poor prognosis and triple negative breast cancer. Oncogene 2014; 33: 679–689.

    Article  CAS  PubMed  Google Scholar 

  41. He T, Qi F, Jia L, Wang S, Song N, Guo L et al. MicroRNA-542-3p inhibits tumor angiogenesis by targeting angiopoietin 2. J Pathol 2014; 232: 499–508.

    Article  CAS  PubMed  Google Scholar 

  42. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 2012; 109: 2784–2789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caine GJ, Lip GY, Blann AD . Platelet derived VEGF, Flt-1, angiopoietin-1, and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumor angiogenesis. Ann Med 2004; 36: 273–277.

    Article  CAS  PubMed  Google Scholar 

  44. Reiss Y, Knedia A, Tal AO, Schmidt MH, Jugold M, Kiessling F et al. Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol 2009; 217: 571–580.

    Article  CAS  PubMed  Google Scholar 

  45. Harfouche R, Echavarria R, Rabbani SA, Arakelian A, Hussein MA, Hussain SN . Estradiol dependent regulation of angiopoietin expression in breast cancer cells. J Steroid Biochem Mol Biol 2011; 123: 17–24.

    Article  CAS  PubMed  Google Scholar 

  46. Danza K, Pilato B, Lacalamita R, Addati T, Giotta F, Bruno A et al. Angiogenetic axis angiopoietins/Tie2 and VEGF in familial breast cancer. Eur J Hum Genet 2013; 21: 824–830.

    Article  CAS  PubMed  Google Scholar 

  47. Heesen S, Fonorod M . The inner nuclear envelope as a transcription factor resting place. EMBO Rep 2007; 8: 914–919.

    Article  Google Scholar 

  48. Steglich B, Sazer S, Ekwall K . Transcriptional regulation at the yeast nuclear envelope. Nucleus 2013; 4: 379–389.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  PubMed  Google Scholar 

  50. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ke Ma and Jewell Graves (University of Illinois Research Resources Center) for assistance with microscopy and flow cytometry. KK was supported by NIH National Research Service award DE18381. This study was supported by Department of Defense Breast Cancer Research Program award W81XWH-10-1-0081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Crowe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, K., Wu, J. & Crowe, D. Tumor suppressor control of the cancer stem cell niche. Oncogene 35, 4165–4178 (2016). https://doi.org/10.1038/onc.2015.475

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2015.475

This article is cited by

Search

Quick links